
2009年度GCOEフロンティアセミナー

精密単独測位の技術動向と応用 Precise Point Positioning (PPP) and Its Applications

Precise Point Positioning (PPP)

Precise Point Positioning (PPP)

Typical Analysis Strategy

- Zero-Differenced (ZD) Measurement Equations
- Precise Satellite Orbit/Clock: IGS or Others
- Ionosphere: Eliminated by Ionosphere-Free LC
- Troposphere: ZTD or ZWD Estimation + Mapping Function
- Antenna Model, Earth-Tides, Phase Wind-up Corrections
- Float Estimation of Carrier-Phase Ambiguity

Reference

 J.F. Zumberge et al., Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks", JGR, Vol. 102, No. B3, 1997

3

Features and Applications

Feature

- with Single Receiver (No Reference Station)
- Efficient Analysis for Many Receivers
- Absolute Position in ITRF Frame

Applications

- Crustal Deformation Monitoring
- GPS Seismometer
- GPS Meteorology
- POD (Precise Orbit Determination) of LEO Satellite
- Precise Time Transfer

Limitations of Conventional PPP

- Accuracy/Precision
 - Depend on Quality of Precise Satellite Orbit/Clock
 - Satellite Clock Interpolation Error/Day-Boundary Problem
 - Solution Drift by Float Ambiguity and Imperfect Correction
- **Real-time Processing**
 - Lack of Real-time Precise Satellite Clock
- Long Convergence Time
 - Due to Float Ambiguity Estimation
- Inaccurate with Single-Freq Receiver
 - Poor Ionospheric Correction Model

5

KGPS vs Kinematic-PPP

Displacement by Iwate-Miyagi EQ

2008/6/13 22:00-6/14 0:30, GSI 0193 Minase

KGPS (BL=219 km) Kinematic-PPP 2 Position ▼ ALL ▼ 🛨 -0.2 N-S (m) U-D (m) 20cm by RTKPOST 2.2.1

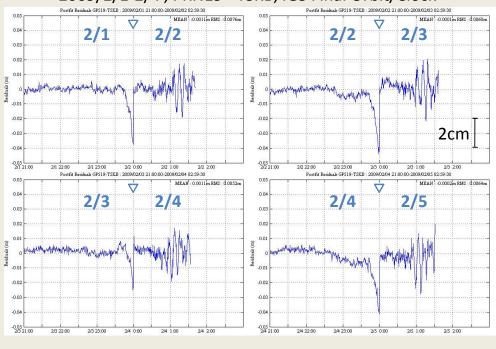
IGS Final Orbit/30-s Clock

by GT 0.6.4 △:Day-Boundary

IGS Orbit/Clock

IGS Prduct Table

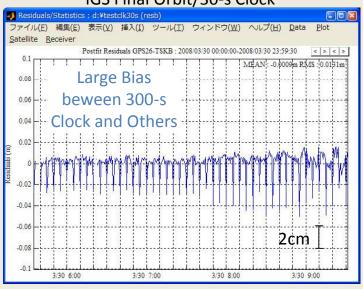
		Final	Rapid	Ultra-Ra	Broadcast	
		(IGS)	(IGR)	Observed	Predicted	Divaucasi
Accuracy	Orbit	~2.5cm	~2.5cm	~3cm	~5cm	~100cm
	Clock	~75ps RMS ~20ps STD	~75ps RMS ~25ps STD	~150ps RMS ~50ps STD	~3ns RMS ~1.5ns STD	~5ns RMS ~2.5ns STD
Latency		12-18 days	17-41 hours	3-9 hours	realtime	realtime
Updates		every Thursday	at 17 UTC daily	at 03, 09, 15, 21 UTC	at 03, 09, 15, 21 UTC	-
Sample Interval	Orbit	15min	15min	15min	15min	daily
	Clock	Sat: 30s Stn: 5min	5min	15min	15min	daily


(2009/8, http://igscb.jpl.nasa.gov/)

7

Day-Boundary Problem

Static-PPP Residuals

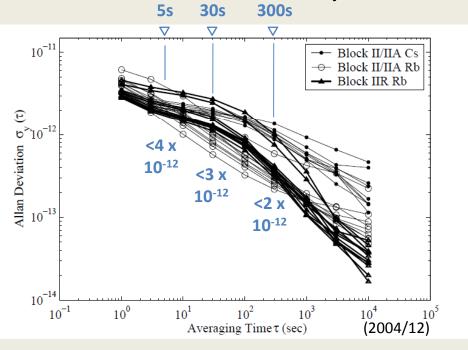

2009/2/1-2/4, PRN19 - TSKB, IGS Final Orbit/Clock

Anomaly of IGS 30-s Clock

Static-PPP Residuals

2008/3/30 5:35-9:30, PRN26 - TSKB IGS Final Orbit/30-s Clock

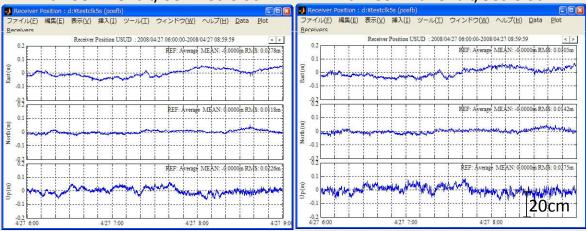
9


IGS AC Orbit/Clock

46	Fir	nal	Rapid		Ultra-Rapid		
AC	Orbit	Clock	Orbit	Clock	Orbit	Clock	
CODE	15min	5s/30s	15min	5min	15min	15min	
ESOC	15min	5min	15min	5min	15min	15min	
GFZ	15min	5min	15min	5min	15min	15min	
JPL	15min	5min	15min	5min	-	-	
NOAA	15min	15min	15min	15min	-	-	
NRCan	15min	30 s	15min	5min	15min	15min	
SIO	15min	-	15min	-	15min	15min	
USNO	-	-	-	-	15min	15min	
MIT	15min	30 s	-	-	-	-	
GRG	15min	5min	-	-	-	-	
USN	-	-	15min	5min	-	-	
GOU	-	-	-	-	15min	15min	

(2009/8, http://igscb.jpl.nasa.gov/)

Interpolation Error of Clock



11

CODE 5-s Clock

S.Schaer, [IGSMAIL-5771] Model changes made at CODE, 14 May 2008 H.Bock et. al., High-rate GPS clock correction from CODE: support of 1Hz applications, *J Geod.*, 2009

1Hz Kinematic-PPP 2008/4/27 6:00-9:00 IGS USUD with CODE Orbit/CODE 5s Clock with IGS Final Orbit/30s Clock

RMSE: E: 2.78cm N: 1.18cm U: 2.26cm

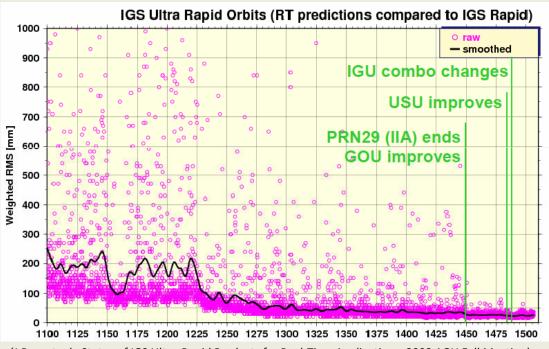
RMSE: E: 3.05cm N: 1.42cm U: 2.75cm

Real-Time PPP

13

Real-Time PPP

- Strategy 1:
 - Orbit/Clock: Estimated in Real-Time
 - Need World-Wide Station Network (>50 Stations)
 - Complicated Processing Process
 - CPU Load Restriction
- Strategy 2:
 - Orbit: Fixed to IGU-Predicted
 - Clock: Estimated in Real-Time
 - Regional Station Network
 - Simple Processing Process


StarFireTM

Features

- Commercial Service by NavCom
- Broadcast Real-Time Orbit/Clock via Satellite (Inmarsat)
- JPL RTG (Real-time GIPSY) Processing Engine (GDGPS)
- World Wide Station Network (72 Stn in 2006)
- Ionosphere: L1/L2 Dual-Freq
- Troposphere: WAAS Model
- QC by Real-Time Monitor for Satellite Anomaly
- Accuracy/Precision
 - Horizontal Position RMS: <10 cm

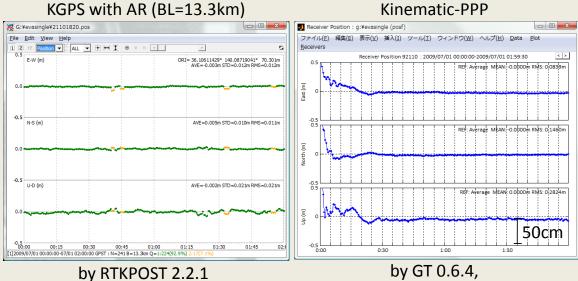
15

Improvement of IGU Orbit

(J.Ray et. al., Status of IGS Ultra-Rapid Products for Real-Time Applications, 2008 AGU Fall Meeting)

IGU Orbit + Clock Est + PPP

- RTnet
 - Developed by GPS Solutions (http://www.gps-solutions.com)
- CDAAC
 - Near Real-Time POD of LEO Satellites (COSMIC ...)
 - Bernese 5.0
- EUREF NRTK Service
 - Use RTnet
 - Provide Real-Time Orbit/Clock via Internet (NTRIP)
- JMA
 - Near Real-Time GEONET PWV for NWM


17

PPP-AR

Convergence Time of PPP

Kinematic Solution

2009/7/1 0:00-2:00, GSI 2110

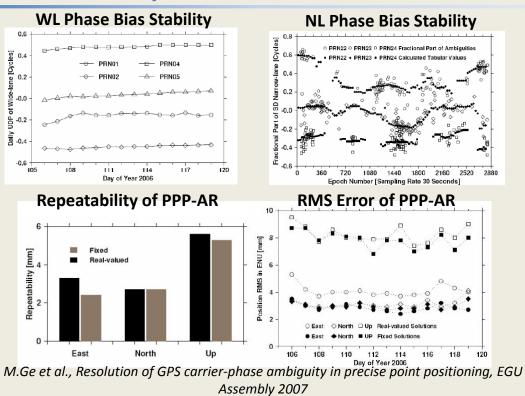
19

IGS Final Orbit/CODE 5-s Clock

PPP-AR

- with AR for PPP
 - Improve Convergence Time
 - Improve Accuracy of Static Solution (EW, UD)
 - Improve Stability of Kinematic Solution
- Difficulties of AR for PPP
 - Unknown Satellite Initial Phase Biases
 - Effect of Precise Orbit/Clock Error
 - Effect of Ionospheric Delay
 - Code/Phase Bias Instability
 - Multipath Effect at Reference Station Network

Research


- •M.Ge et al., <u>Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with</u> daily observations, Journal of Geodesy, 2007
- •D.Laurichesse et al., <u>Integer ambiguity resolution on undiffernced GPS phase measurements and</u> its application to PPP, ION GNSS 2007
- •G.Weber et al., <u>Real-time Clock and Orbit Corrections for Improved Point Positioining via NTRIP</u>, ION GNSS 2007
- •D.Laurichesse et al., <u>Real Time Zero-difference Ambiguities Fixing and Absolute RTK</u>, ION NTM 2008
- •P.Collins, Isolating and Estimating Undifferenced GPS Integer Ambiguity, ION NTM 2008
- •J.Delporte et al., <u>GPS Carrier-Phase Time Transfer Using Single-Difference Integer Ambiguity</u> Resolution, International Journal of Navigation and Observation, 2008
- •J. Geng et al., <u>Performance of Hourly Precise Point Positioing with Ambiguity Resolution</u>, ION GNSS 2008
- •P.Collins et al., <u>Precise Point Positioning with Ambiguity Resolution using the Decoupled Clock</u> Model, ION GNSS 2008
- •D.Laurichesse et al., Zero-differnce Ambiguity Fixing for Spaceborne GPS Receivers, ION GNSS 2008
- •L.Mervart et al., Precise Point Positioning With Ambiguity Resolution In Real-Time, ION GNSS 2008
- •C.Rocken et al., <u>Precise Positioning of Ships and Buoys in the Open Ocean Result from a 3-month</u> Indian Ocean Cruise, and Tsunami Buoy Off Japan's Coast, ION GNSS 2008
- •T.Iwabuchi et al., Deformation Monitoring with Single Frequency L1 Receivers, ION GNSS 2008

21

PPP-AR Strategy/Application

- Typical Strategy
 - Post Processing, Few Research for in Real-Time
 - Use Global Reference Stations Network
 - Fix Narrow-Lane Ambiguity with Iono-Free LC after Fixing Wide-Lane MW LC
 - Estimate Satellite Initial Phase Bias Assuming its Stability
 - PPP with Initial Phase Bias Correction
- Application
 - Precise Network Coordinates by Static-PPP
 - LEO Satellite POD, ...

M.Ge et al., EGU 2007

PPP-RTK

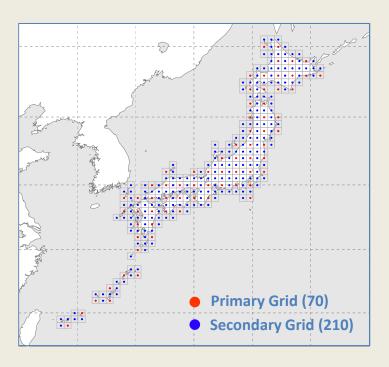
PPP-RTK

Two View Points

- Widely Extended NRTK (Network RTK)
- Real-Time Kinematic PPP with AR

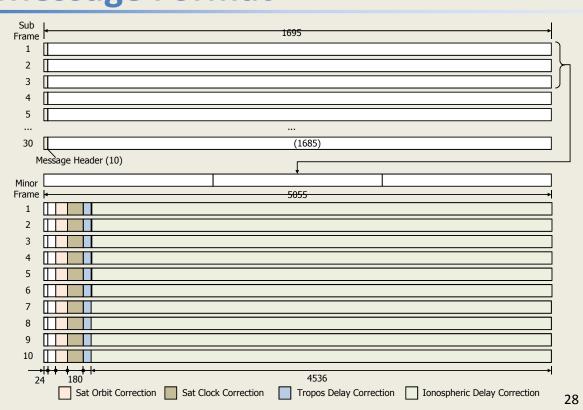
Feature

- State Space Correction Data
- Satellite Code/Phase Bias Corrections for AR
- Ionospheric Model for Single-Freq Users
- Minmum Band-Width for Broadcast Communication Link

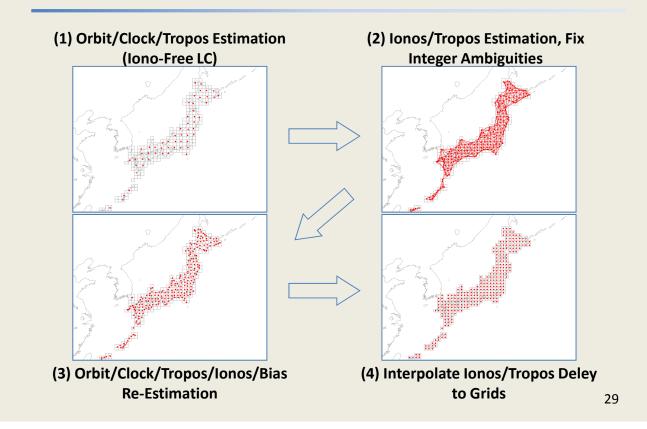

25

PPP-RTK via QZS LEX

Corrections	Bits	LSB	Range	# Sat	# Grid	Interval	bps
Sat Orbit	15×3	2mm	-33-33m	12	-	30s	18
	15×3	.02mm/s	33m/s	12	-	30s	18
Sat Clock	15	0.006ns	-98-98ns	12	-	3s	60
Ionos Delay	15	2mm	0-66m	12	70 O	30s	420
	13	2mm	-8-8m	12	210 0	30s	1092
Tropos Delay	11	0.5mm	0-1m	-	70 🔾	30s	26
Phase Bias	11×3	0.01cyc	-10-10cyc	12	-	30s	13
Code Bias	8×3	0.1m	-13-13m	12	-	30s	10
Sat ID+IOD	8+8	-	-	12	-	30s	6
Others	-	-	-	-	-	1-30s	32
							4605


Total 1695

Correction Grid

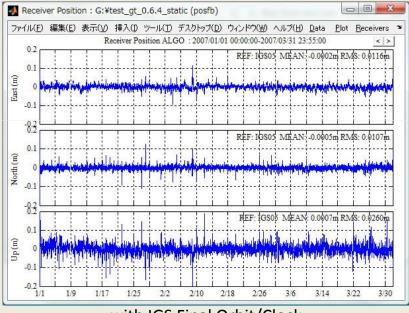


27

Message Format

Correction Generation

GT 0.6.4

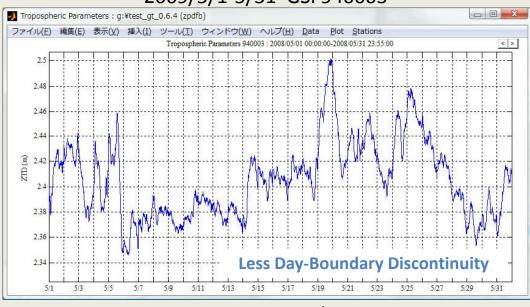

GT 0.6.4

- 2009/5/1 Release
 - Open Source License (GPLv3)
 - Matlab 7.3 (R2006b) or Higher, 32bit or 64bit
- GT 0.6.3 -> 0.6.4
 - Support High Rate Analysis up to 100 Hz
 - Support Long Continuous Session up to 1 year
 - Support IGS 30-S, CODE 5-s, IGS/CODE 5-s Clock
 - Support IGS05, ITRF2005 Frame
 - Support VMF1 and GPT Meteo Model
 - Support Az Term of Receiver Antenna PCV

31

Stability of Kinematic-PPP

2007/1/1-3/31 IGS ALGO

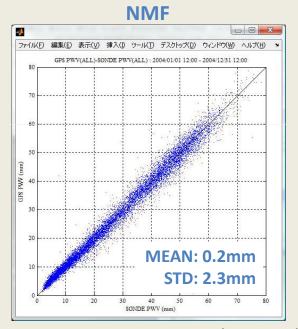


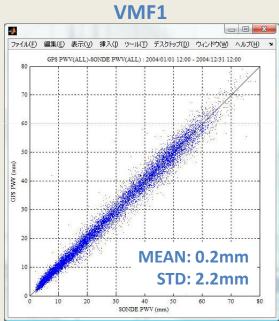
RMS Error: E: 1.16cm N: 1.07cm U:2.60cm

with IGS Final Orbit/Clock

Long Session ZTD

2009/5/1-5/31 GSI 940003




with IGS Final Orbit/Clock

33

NMF vs VMF1

Sonde PWV - GPS PWV: GSI 19 Stns, 2004/1/1-12/31

with IGS Final Orbit/Clock