平成30年度測位航法学会全国大会セミナー②

RTKによるセンチメータ級 位置計測技術の基礎と応用

東京海洋大学、ライトハウステクノロジー・アンド・コンサルティング 高須 知二

2018-05-16@東京海洋大学 越中島

時間割

(1) GNSS測位の仕組み 9:30-10:30 (2) 受信機を使ってみよう(実習) 10:40-11:40 (3) RTKの原理 12:40-14:00 (4) RTKLIBを使ってみよう(実習) 14:10-15:20 (5) RTKおよびGNSS測位の応用 15:30-16:30

自己紹介

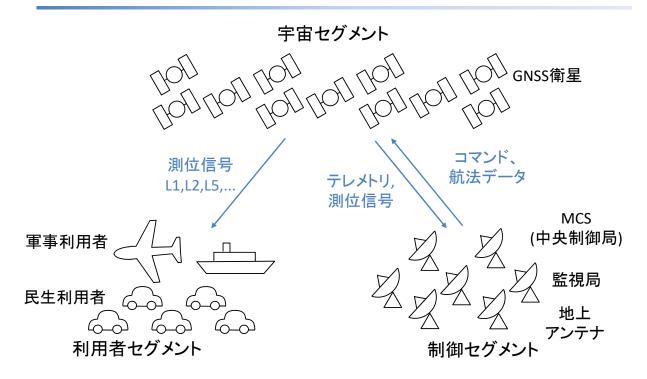
- ソフトウェア・エンジニア
 - 宇宙開発分野:人工衛星、地上系等
 - 得意分野:解析系...
 - コードは20年以上書いている...
- 現在の所属と仕事
 - 東京海洋大学 客員研究員 (11年) へGPS/GNSS精密測位技術衛星軌道の精密決定
 - ライトハウステクノロジー・アンド・コンサルティング (5年)
 実用準天頂衛星 (QZSS) システム開発
 MADOCAの開発 (JAXA)
 QZSS L6受信機の開発 (MADOCA, CLAS)

3

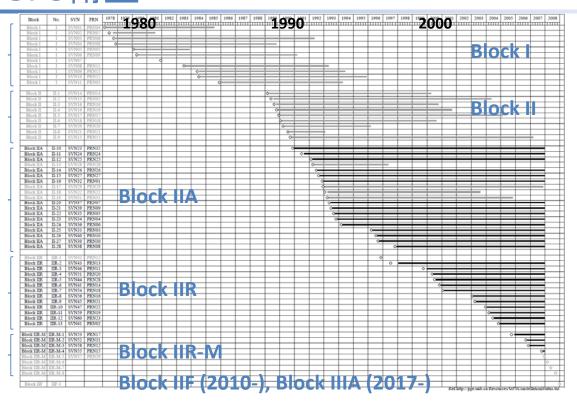
GNSS受信機コレクタ

(1) GNSS測位のしくみ

5


GNSSとは何か

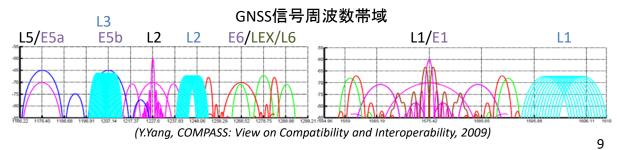
- GNSS (全地球航法衛星システム)
 - GPS (米国)
 - GLONASS (ロシア)
 - Galileo (欧州)
 - BeiDou (中国)
- RNSS (地域航法衛星システム)
 - QZSS (日本)
 - IRNSS (インド)
- SBAS (静止衛星型衛星航法補強システム)
 - WAAS, EGNOS, MSAS, SDCM, GAGAN



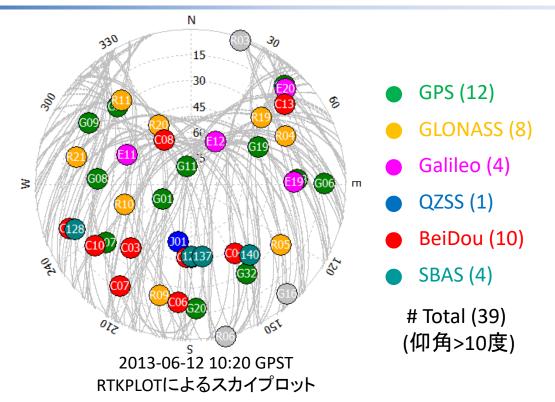
(http://www.ion.org/museum)

GNSSシステム

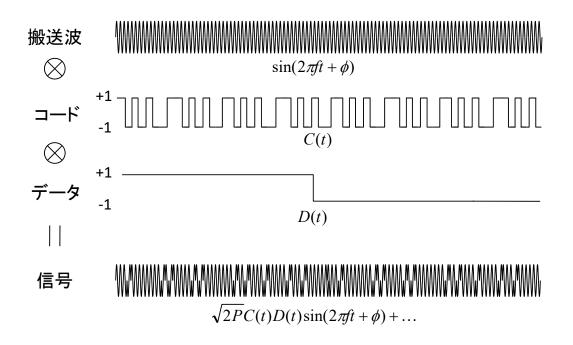
GPS衛星



7

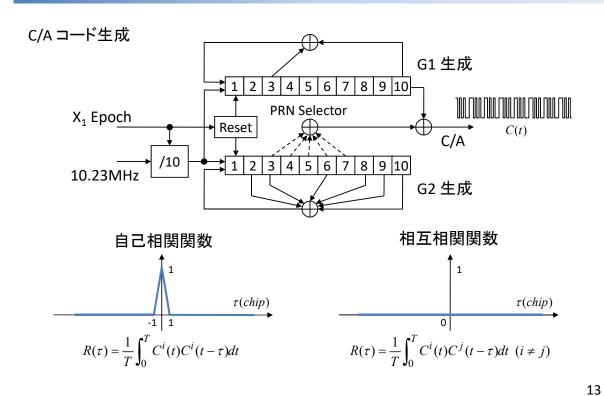

GNSS衛星及び信号帯域

GNSS ²	衛星	ഗ	数
01400	+) =		2.

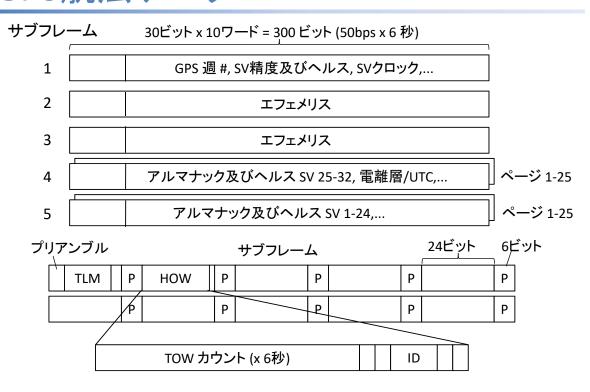

3,100,111				
システム	2010	2014	2017	2020
GPS	31	31	32	32
GLONASS	23 (+2)	24 (+3)	24 (+3)	24 (+3)
Galileo	0	4	18	27 (+3)
BeiDou	6	16	35	35
QZSS	1	1	4	7
IRNSS	0	1	7	7
SBAS	7	8	11	11
合計	68	86	134	149

東京上空のGNSS衛星配置

GNSS信号の構造



GNSS信号の仕様


周:	波数(MHz)	コード	変調	データレート	GNSS
L1/E1	1575.42	C/A	BPSK (1)	50 bps	GPS, QZSS
				250 bps	QZSS (L1-SAIF), SBAS
		P(Y)	BPSK (10)	50 bps	GPS
		L1C-d/p	MBOC (6,1,1/11)	-/100 bps	GPS (IIIA-), Galileo
		L1C-d/p	BOC (1,1)	-/100 bps	QZSS
L1	1602+0.5625K	C/A	BPSK	50 bps	GLONASS
L2	1227.60	P(Y)	BPSK (10)	50 bps	GPS
		L2C	BPSK (1)	25 bps	GPS (IIRM-), QZSS
L2	1246+0.4375K	C/A	BPSK	50 bps	GLONASS
L5/E5a 1176.45	L5-I/Q	BPSK (10)	-/100 bps	GPS (IIF-), QZSS	
	1176.45	E5a-I/Q	BPSK (10)	-/50 bps	Galileo
E5b	1207.14	E5b-I/Q	BPSK (10)	-/250 bps	Galileo
E6/LEX	1278.75	E6-I/Q	BPSK (5)	-/1000 bps	Galileo
		LEX	BPSK (5)	2000 bps	QZSS

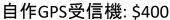
11

PRN(疑似雑音)コード

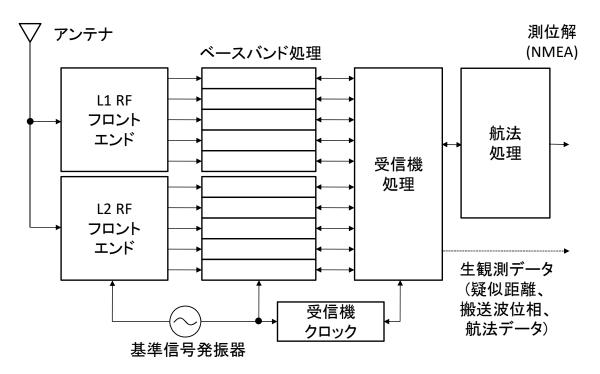
GPS航法データ

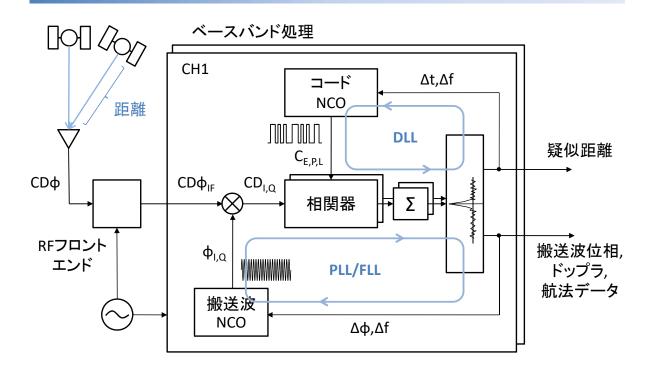
GNSS受信機

市販受信機: \$20 - \$30,000



SiRF, u-blox, Garmin, Hemisphere, Trimble, Leica, Topcon, NovAtel, JAVAD, Magellan, ...





15

GNSS受信機の内部構造

GNSS受信機の内部動作

17

GNSS受信機/航法処理

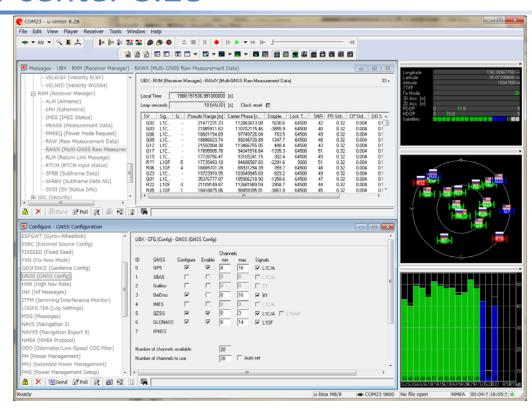
- 受信機処理
 - 信号捕捉:ドップラ/コード位相探索
 - コード追尾 : DLL (Delay Lock Loop)
 - 搬送波追尾 : PLL/FLL (Phase/Freq Lock Loop)
 - 航法データ復調 (エフェメリス,...)
 - 疑似距離、搬送波位相生成
- 航法処理
 - GNSS測位演算(単独, DGPS, RTK, ...)
 - 座標変換
 - 入出力メッセージ処理 (NMEA, RTCM, ...)

GNSS測位演算

$$x = (r_r^T, cdt)^T, \quad y = (P_r^{S_1}, P_r^{S_2}, P_r^{S_3}, ..., P_r^{S_m})^T$$
 疑似距離
$$h(\hat{x}) = \begin{bmatrix} \rho_r^{S_1} + c\hat{d}t - cdT^{S_1} \\ \rho_r^{S_2} + c\hat{d}t - cdT^{S_2} \\ \rho_r^{S_3} + c\hat{d}t - cdT^{S_3} \\ \rho_r^{S_m} + c\hat{d}t - cdT^{S_m} + I_r^{S_3} + I_r^{S_3} \\ \vdots \\ \rho_r^{S_m} + c\hat{d}t - cdT^{S_m} + I_r^{S_m} + I_r^{S_m} \end{bmatrix} H = \begin{bmatrix} -e_r^{S_1} & 1 \\ -e_r^{S_2} & 1 \\ -e_r^{S_3} & 1 \\ \vdots & \vdots \\ -e_r^{S_m} & 1 \end{bmatrix}$$
 衛星
$$\hat{x} = (\hat{r}_r^T, c\hat{d}t)^T \quad \text{受信機位置} + \\ \hat{y} = \hat{x}_0 + (H^T H)^{-1} H^T (y - h(\hat{x}_0))$$

(2) 受信機を使ってみよう 19

u-blox NEO-M8T



https://www-u-blox.com

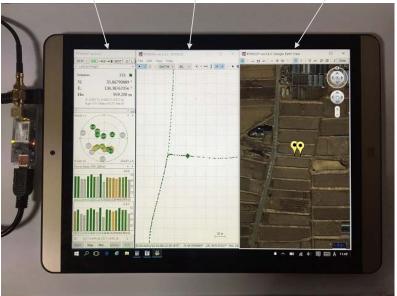
21

u-center 8.28

u-centerを使って受信機内部を覗く

- Message View
 - NMEA
 - MON HW
 - NAV ORB, PVT, SAT, SVINFO,
 - RXM RAWX, SFRBX
- Configuration View
 - DGNSS, GNSS
 - MSG
 - PORT, RATE
 - NAV5
 - PORT

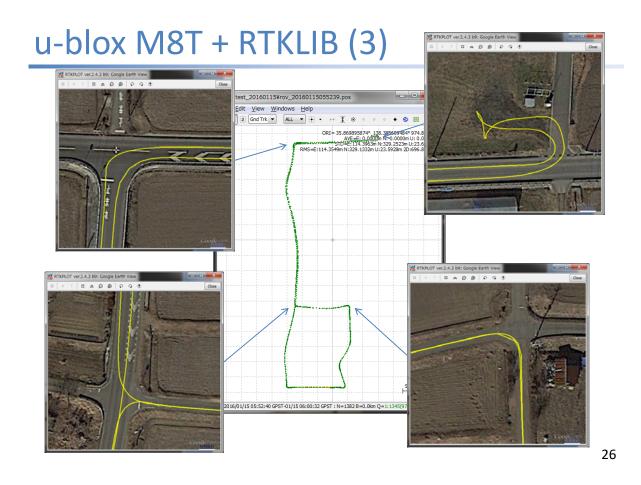
23


u-blox M8T + RTKLIB (1)

RTKNAVI

RTKPLOT

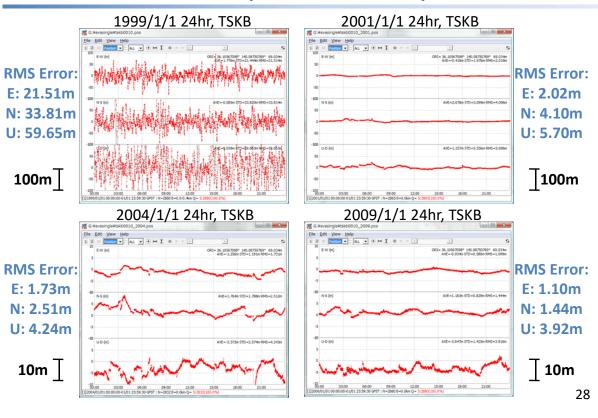
RTKPLOT (GE View)



ONDA V919 Air CH 9.7" (2048x1536) ATOM X5-8300, RAM 4GB, Flash 64GB

Com Link to base-station: Y-mobile WiFi Router

u-blox M8T + RTKLIB (2)



25

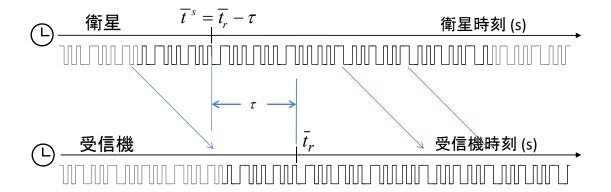
(3) RTKの原理

27

GNSS標準測位 (コード測位) 誤差

コード測位 vs 搬送波測位

	標準測位(コード測位)	高精度測位(搬送波測位)
観測量	疑似距離 (コード)	搬送波位相 + 疑似距離
受信機ノイズ	30 cm	3 mm
マルチパス	30 cm - 30 m	1 - 3 cm
感度	高感度 (C/N0<15dBHz)	低感度 (C/N0>35dBHz)
連続性	-	サイクルスリップ
アンビギュイティ	-	推定/AR
受信機価格	安価 (~\$100)	高価 (~\$20,000)
精度 (RMS)	3 m (H), 5 m (V) (単独) 1 m (H), 2 m (V) (DGPS)	5 mm (H), 1 cm (V) (静止) 1 cm (H), 2 cm (V) (RTK)
応用	航法,時刻,	測量, 地図,

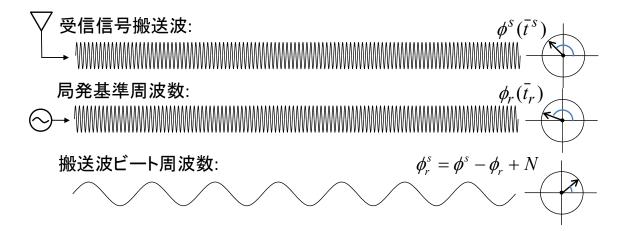

29

疑似距離

定義:

$$P_r^s \equiv c\tau = c(\overline{t_r} - \overline{t}^s)$$
(m)

The pseudo-range (PR) is the distance from the $P_r^s \equiv c\tau = c(\overline{t_r} - \overline{t}^s)$ receiver antenna to the satellite antenna including receiver and satellite clock offsets (and other biases, such as atmospheric delays) (RINEX 2.10)



搬送波位相

定義:

$$\phi_r^s = \phi^s - \phi_r + N$$
 (cycle)

... actually being a measurement on the beat frequency between the received carrier of the satellite signal and a receiver-generated reference frequency. (RINEX 2.10)

31

RTKの技術要素

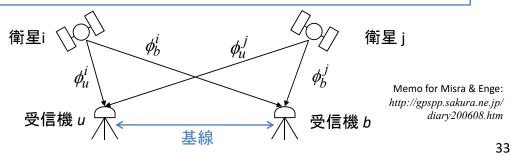
- 二重位相差
 - 搬送波位相による高精度観測値
 - 衛星 · 受信機時計誤差消去
 - 暦誤差+電離層+対流圏遅延消去(短基線)
- ・ 高速アンビギュイティ(整数値バイアス)決定
 - 高速な高精度解
 - 高速初期化(瞬時~数分)
 - 高速再初期化(移動体・スリップ対応)

二重位相差

$$\Phi_{ub}^{ij} \equiv \lambda((\phi_{u}^{i} - \phi_{b}^{i}) - (\phi_{u}^{j} - \phi_{b}^{j}))$$

$$= \rho_{ub}^{ij} + c(dt_{ub}^{ij} - dT_{ub}^{ij}) - I_{ub}^{ij} + T_{ub}^{ij} + \lambda B_{ub}^{ij} + d_{ub}^{ij} + \varepsilon_{\Phi}$$

$$= \rho_{ub}^{ij} - I_{ub}^{ij} + T_{ub}^{ij} + \lambda N_{ub}^{ij} + d_{ub}^{ij} + \varepsilon_{\Phi}$$


$$dt_{ub}^{ij} = dt_{u}^{ij} - dt_{b}^{ij} = 0, dT_{ub}^{ij} = dT_{ub}^{i} - dT_{ub}^{j} \approx 0$$

$$B_{ub}^{ij} = (\phi_{u,0} - \phi_{0}^{i} + N_{u}^{i}) - (\phi_{b,0} - \phi_{0}^{i} + N_{b}^{i}) - (\phi_{u,0} - \phi_{0}^{j} + N_{u}^{j}) + (\phi_{b,0} - \phi_{0}^{j} + N_{b}^{j}) = N_{ub}^{ij}$$

$$+ (短基線+同-アンテナ)$$

$$\Phi_{ub}^{ij} \approx \rho_{ub}^{ij} + \lambda N_{ub}^{ij} + \mathcal{E}_{\Phi}$$

$$I_{ub}^{ij} = I_{ub}^{i} - I_{ub}^{j} \approx 0, T_{ub}^{ij} = T_{ub}^{i} - T_{ub}^{j} \approx 0, d_{ub}^{ij} = d_{ub}^{i} - d_{ub}^{j} \approx 0$$

基線解析

非線形最小二乗:

$$\mathbf{x} = (\mathbf{r}_u^T, N_{ub}^{s_2 s_1}, N_{ub}^{s_3 s_1}, ..., N_{ub}^{s_m s_1})^T$$

観測ベクタ:

$$y = (y_{t_1}^T, y_{t_1}^T, ..., y_{t_n}^T)^T$$

観測モデル:

$$\mathbf{h}(\mathbf{x}) = \left(\mathbf{h}_{t_1}(\mathbf{x})^T, \mathbf{h}_{t_2}(\mathbf{x})^T, ..., \mathbf{h}_{t_n}(\mathbf{x})^T\right)^T$$

$$\mathbf{H} = \left(\mathbf{H}_{t_1}^T, \mathbf{H}_{t_2}^T, ..., \mathbf{H}_{t_n}^T\right)^T$$

観測誤差共分散:

$$\mathbf{R} = blkdiag(\mathbf{R}_{t_1}, \mathbf{R}_{t_2}, ..., \mathbf{R}_{t_n})$$

解法:

$$\hat{x} = x_0 + (H^T R^{-1} H)^{-1} H^T R^{-1} (y - h(x_0))$$

$$\mathbf{y}_{t_{k}} = (\mathbf{\mathcal{O}}_{ub,t_{k}}^{S_{2}S_{1}}, \mathbf{\mathcal{O}}_{ub,t_{k}}^{S_{3}S_{1}}, \dots, \mathbf{\mathcal{O}}_{ub,t_{k}}^{S_{m}S_{1}})^{T}$$

$$\mathbf{h}_{t_{k}}(\mathbf{x}) = \begin{pmatrix} \rho_{u,t_{k}}^{S_{2}S_{1}} - \rho_{b,t_{k}}^{S_{2}S_{1}} + \lambda N_{ub}^{S_{2}S_{1}} \\ \rho_{u,t_{k}}^{S_{3}S_{1}} - \rho_{b,t_{k}}^{S_{3}S_{1}} + \lambda N_{ub}^{S_{m}S_{1}} \\ \vdots \\ \rho_{u,t_{k}}^{S_{m}S_{1}} - \rho_{b,t_{k}}^{S_{m}S_{1}} + \lambda N_{ub}^{S_{m}S_{1}} \end{pmatrix}$$

$$\mathbf{H}_{t_{k}} = \begin{pmatrix} -\mathbf{e}_{u,t_{k}}^{S_{2}S_{1}} & \lambda & 0 & \cdots & 0 \\ -\mathbf{e}_{u,t_{k}}^{S_{3}S_{1}} & 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\mathbf{e}_{u,t_{k}}^{S_{m}S_{1}} & 0 & 0 & \cdots & \lambda \end{pmatrix}$$

$$\mathbf{R}_{t_{k}} = \begin{pmatrix} 4\sigma_{\phi}^{2} & 2\sigma_{\phi}^{2} & \cdots & 2\sigma_{\phi}^{2} \\ 2\sigma_{\phi}^{2} & 4\sigma_{\phi}^{2} & \cdots & 2\sigma_{\phi}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ 2\sigma_{\phi}^{2} & 2\sigma_{\phi}^{2} & \cdots & 4\sigma_{\phi}^{2} \end{pmatrix}$$

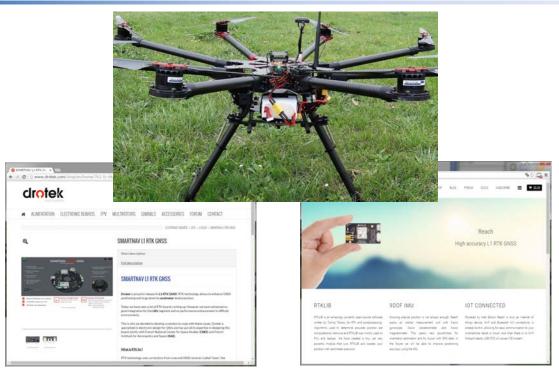
 r_b :基準局座標

アンビギュイティ決定

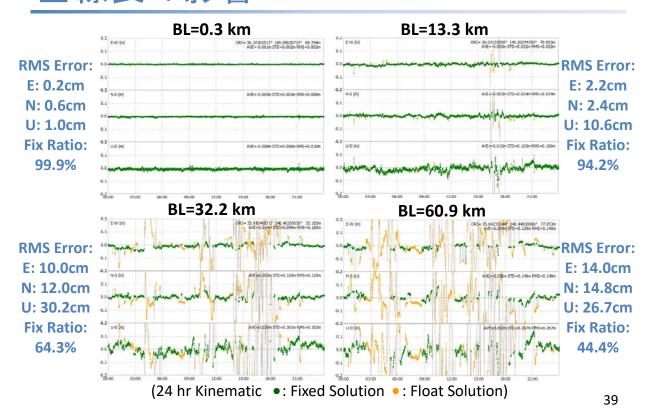
- 目的
 - 精度改善
 - 収束時間高速化
- 多数の過去研究開発
 - 単純四捨五入
 - WL/NL手法
 - 受信機座標空間探索
 - アンビギュイティ空間探索
 - AFM, FARA, LSAST, LAMBDA, ARCE, HB-L³, Modified
 Cholesy Decomposition, Null Space, FAST, OMEGA, ...

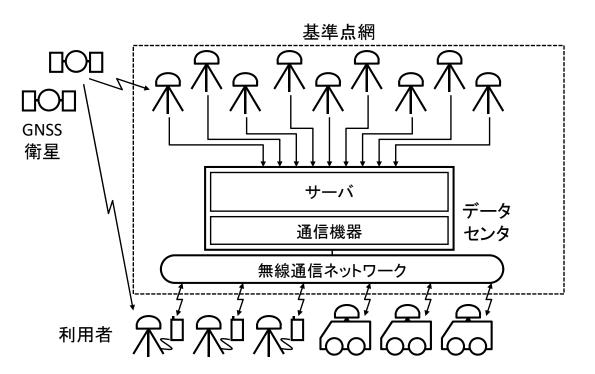
35

RTK (リアルタイムキネマティック)


- 基線解析による精密測位技術
 - ローバアンテナ位置のリアルタイム算出
 - 通信リンク
 - OTF (オンザフライ) 整数アンビギュイティ決定
 - 精度: 1 cm + 1ppm x 基線長 (水平RMS)
 - 応用: 測地測量, 建設機械制御, 精密農業等

RTKの応用 (1)


RTKの応用 (2)


http://www.drotek.com

http://www.emlid.com

基線長の影響

ネットワーク型RTK

GEONET

(http://terras.gsi.go.jp/ja/index.htm)

41

NRTKサービス

- 国内NRTKサービスプロバイダ
 - ジェノバ (http://www.jenoba.jp)
 - 日本GPSデータサービス (http://www.gpsdata.co.jp)
 - 日本テラサット (http://www.terasat.co.jp)
- 主要サーバソフトウェア
 - Trimble GPSNet/RTKNet
 - GEO++ GNSSMART
 - Leica GNSS Spider

RTKの制約

- 受信機コスト
 - 2周波受信機は未だに高価 (¥100~300万/台)
- 基準点設置•運用
 - 単独受信機のみで測位できない
- 基線長制限
 - 10~20 kmを越える基線で性能悪化
- 利用可能エリア制限
 - 基準点近傍エリアのみ
 - 広域利用には非常に多数の基準点が必要

43

RTKLIB **5**

• OSS GNSS測位解析パッケージ

- 開発開始 : 2006年

- 現行バージョン: ver. 2.4.2 p13

− ライセンス : BSD 2-clause

API + AP

- オールインワンパッケージ

- Windows : GUI AP

- その他: CUI (CLI) AP

ダウンロードー

https://github.com/tomojitakasu/RTKLIB

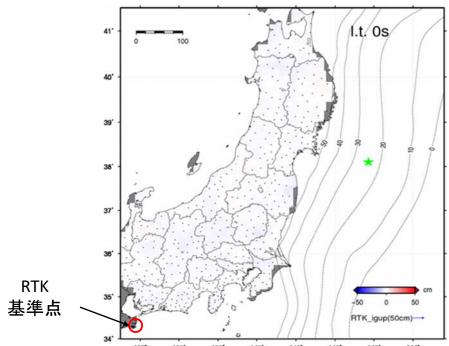
RTKLIB: 履歴

- 2006/4 v.0.0.0 初期バージョン (RTK+C 講義用)
 2007/1 v.1.0.0 単機能後処理基線解析AP
- 2008/7 v.2.1.0 後処理AP追加
- 2009/1 v.2.2.0 リアルタイムAP追加、NTRIPサポート OSS配布開始
- 2009/5 v.2.2.1 RTCM, NRTKサポート, 受信機追加
- 2009/12 v.2.3.0 GLONASSサポート, 受信機追加
- 2010/8 v.2.4.0 PPP、長基線RTKサポート, 受信機追加
- 2011/6 v.2.4.1 QZSSサポート, 受信機追加
- 2013/4 v.2.4.2 Galileo, BeiDouサポート追加
- 2018/2 v.2.4.2 p13 (各種バグ修正)

45

RTKLIB: 特徵

- GNSS衛星による標準及び高精度測位:
 - GPS, GLONASS, QZSS, Galileo, BeiDou and SBAS
- リアルタイム及び後処理測位モード:
 - Single, SBAS, DGPS, RTK, Static, Moving-base and PPP
- 標準フォーマット/プロトコル及び受信機サポート:
 - RINEX 2/3, RTCM 2/3, BINEX, NTRIP 1.0, NMEA0183, SP3,
 RINEX CLK, ANTEX, NGS PCV, IONEX, RTCA-DO-229, EMS,
 - NovAtel, JAVAD, Hemisphere, u-blox, SkyTraq, NVS, ...
- リアルタイム通信:
 - シリアル, TCP/IP, NTRIP 及びファイル


RTK (従来)

RTK with RTKLIB

RTKLIB: 応用例

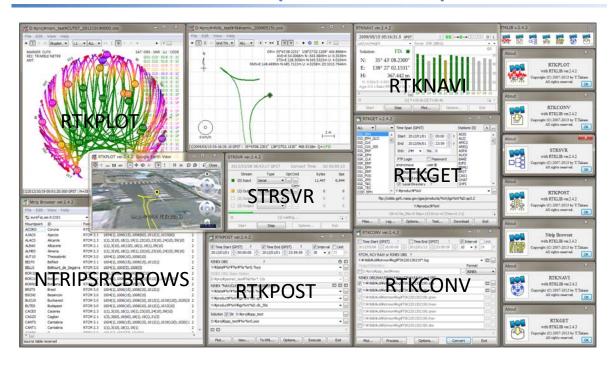
Y. Ohta et al., Quasi real-time fault model estimation for hear-field tsuhami forecasting base on RTK-GPS analysis: Application to the 2011 Tohoku-Oki earthquake (Mw 9.0), JGR-solid earth, 2012

地理院REGARD

(4) RTKLIBを使ってみよう

51

RTKLAUNCH (APランチャ)


• 以下ファイルダブルクリック ...¥seminar_2018¥rtklib_2.4.2p13¥bin¥rtklaunch.exe

RTKPLOT STRSVR NTRIPBR RTKGET RTKCONV RTKPOST RTKNAVI

• デスクトップにショートカット作成

RTKLIB: GUI AP (Windows)

53

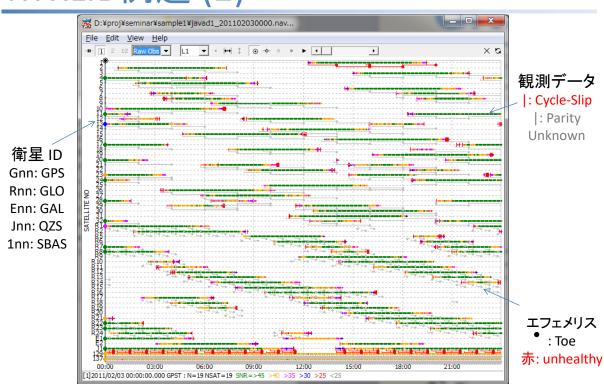
RTKLIB AP

	機能	GUI AP (Windows)	CUI AP
(1)	APランチャ	RTKLAUNCH (3.1)	-
(2)	リアルタイム測位	RTKNAVI (3.2, 3.3, 3.5)	RTKRCV (3.11, A.1)
(3)	通信サーバ	STRSVR, (3.3)	STR2STR (3.11, A.5)
(4)	後処理測位	RTKPOST (3.4, 3.5)	RNX2RTKP (3.11, A.2)
(5)	RINEX変換	RTKCONV (3.6)	CONVBIN (3.11, A.4)
(6)	GNSSデータ・測位解プロット	RTKPLOT (3.7, 3.8)	-
(7)	GNSSデータダウンローダ	RTKGET (3.9)	-
(8)	NTRIPブラウザ	NTRIPBROWS (3.10)	-

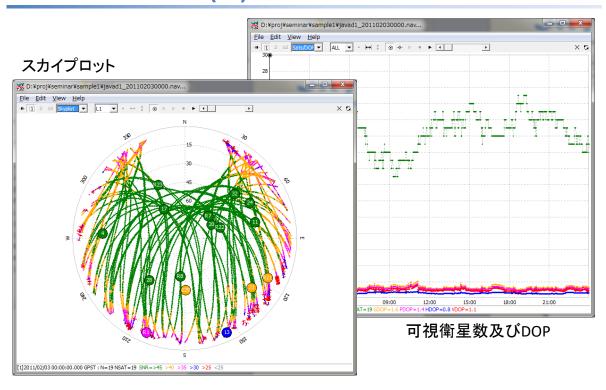
RTKLIB例題 (1)

- RTKPLOT 起動
- 以下メニュー実行:
 File Open Obs Data...
 seminar_2018¥sample1¥
 javad1_201102030000.obs

RTKLIB - RTKPLOT



JAVAD DELTA受信機


Acknowledgment:
Sample data were captured by JAVAD DELTA receiver provided by JAXA

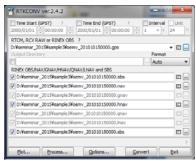
55

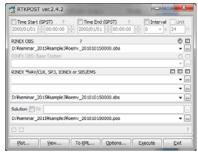
RTKLIB例題 (2)


RTKLIB例題 (3)

57

RTKLIB例題 (4)

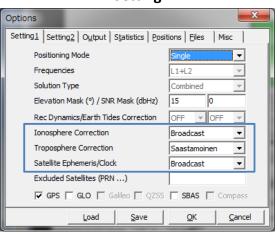

RTKPLOT - Options


観測データ設定

RTKLIB例題 (5)

- RTKCONV実行
- 入力データの設定 seminar_2018¥sample3¥ oemv 201010150000.gps
- "Convert..."ボタン押下
- RINEXデータ確認
- "Process..."ボタン押下
- RTKPOST起動
- "Options..."ボタン押下

RTKCONV

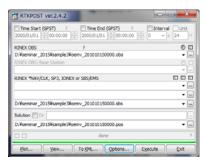

RTKPOST

59

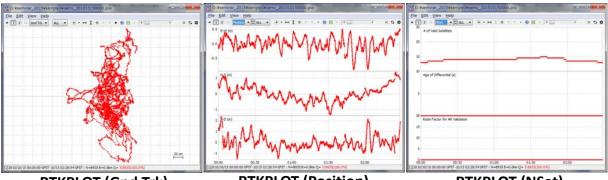
RTKLIB例題 (6)

RTKPOST - Options

Setting1



Output



RTKLIB例題 (7)

- "Execute"ボタン押下
- "Plot..."ボタン押下
- RTKPLOT起動
- "Position" or "NSat"選択

RTKPOST

RTKPLOT (Gnd Trk)

RTKPLOT (Position)

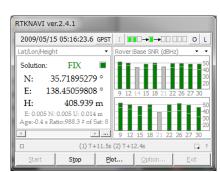
RTKPLOT (NSat)

61

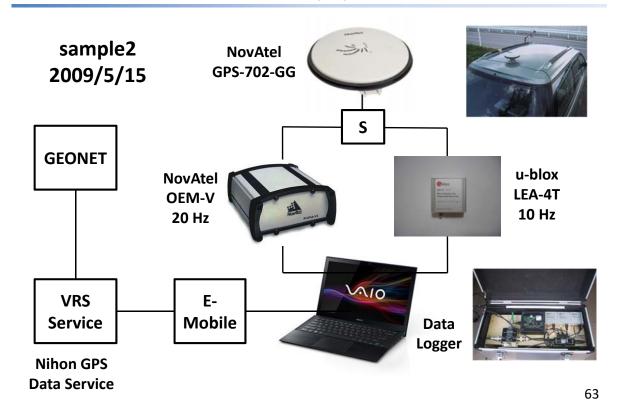
プレイバックデータによるRTK

Program

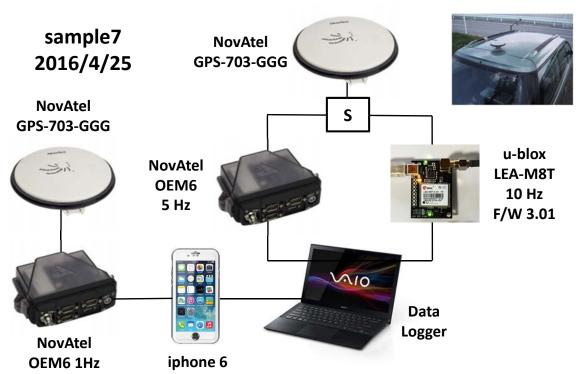
rtklib_2.4.3p13¥bin¥rtknavi.exe

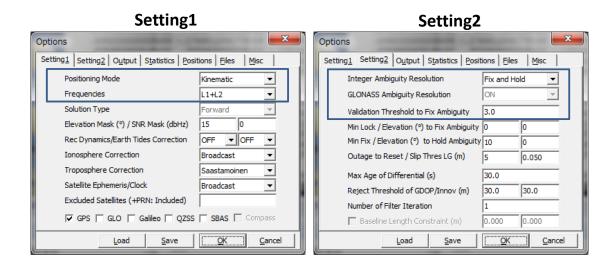

Data 1

sample2¥
oemv_2009515c.gps (NovAtel)
ubx_20090515c.ubx (u-blox)
0263_20090515c.rtcm3 (VRS)


Data 2

sample7¥ nov_201604250304.gps (NovAtel) ubx_201604250304.ubx (u-blox) ref 201604250304.gps (NovAtel)


RTKNAVI


プレイバックデータ (1)

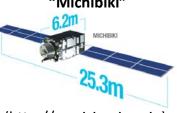
プレイバックデータ (2)

RTKNAVI - オプション

65

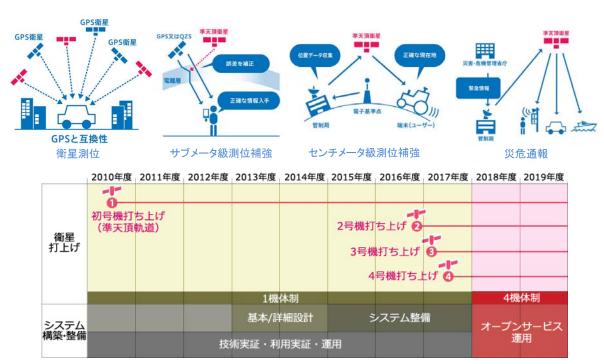
トラ技RTKスタータキット + RTKLIB

(5) RTKおよびGNSS測位の応用


67

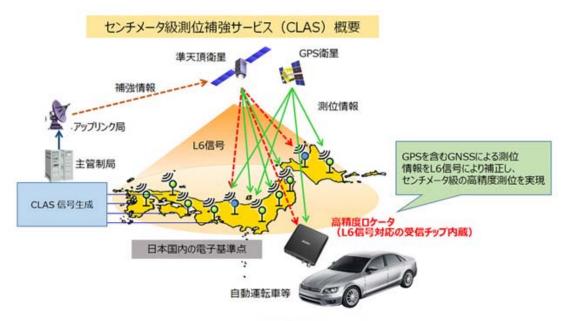
QZSS (準天頂衛星)

- 開発
 - 日本 (JAXA→内閣府, 内閣府)
- 衛星コンストレーション
 - 1 衛星, 4衛星 (3QZO+1GEO), 7衛星
 - 高度: ~36,000km
 - 軌道傾斜角: 43度, 離心率: 0.075 (QZO)
 - 2010/9/11「みちびき」打上
- 信号(「みちびき」)
 - L1C/A, L1C, L2C, L5: GPS互換
 - L1-SAIF/L1S, LEX/L6: 補強



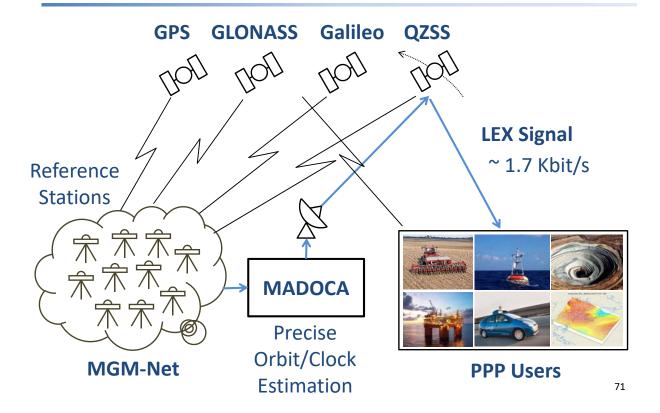
"Michibiki"

(http://qz-vision.jaxa.jp)


QZSS (準天頂衛星)

(http://qzss.go.jp)

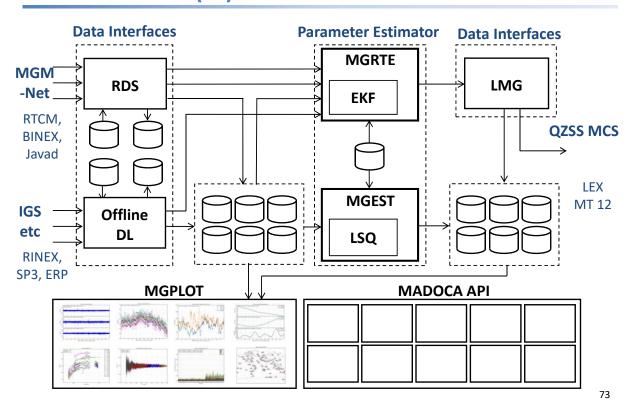
69


CLAS (センチメータ級測位補強サービス

GNSS: Global Navigation Satellite System (全地球航法衛星システム)

(http://www.mitsubishielectric.co.jp)

MADOCA-PPP

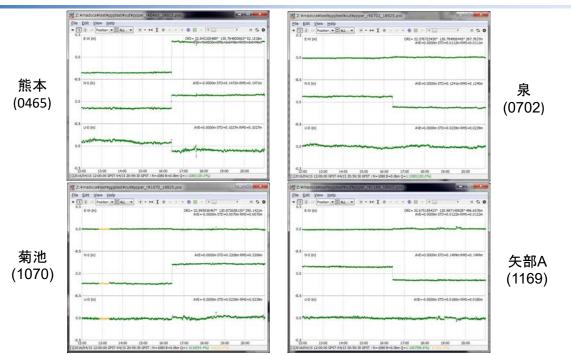


MADOCA (1)

<u>Multi-GNSS Advanced Demonstration tool</u> for Orbit and Clock Analysis

- For real-time PPP service via QZSS LEX
 - Many (potential) applications over global area
- Precise orbit/clock for multi-GNSS constellation
 - Key-technology for future cm-class positioning
- Brand-new codes developed from scratch
 - Optimized multi-threading design for recent CPU
 - As basis of future model improvements

MADOCA (2)



MADOCA-PPP

LEX Data Format

MADOCA PPP応用

2016/4/15 16:25 GPST 熊本地震 (本震) による電子基準点変位の後処理PPP解析 (RTKLIB 2.4.3 b9, Kinematic-PPP-AR, 暦/FCB: MADOCA最終暦

RTKセミナ: まとめ

- GNSS測位の仕組み:内部で大がかりな仕掛けが、GPSだけじゃないよ
- u-blox M8T受信機を例題に受信機内部を探ってみた
- RTKの原理: 色々と面倒だけど1cm測位
- RTKLIB: RTK応用のプラットフォームとなるか
- RTKおよびGNSS測位の応用:期待は大きいが ホントに実用になるのか

75