平成24年度 測位航法学会全国大会

複数GNSS対応高精度軌道時刻 推定ツール (MADOCA) の開発状況 Development Status of MADOCA

東京海洋大学 高須知二、安田明生 宇宙航空研究開発機構 小暮聡、三吉基之、河手香織 日本電気株式会社 曽我広志、平原康孝

2012-04-19 @東京海洋大学品川 楽水会館

Overview

- Background
- PPP (Precise Point Positioning)
- Design
- Models
- Implementation
- Accuracy Evaluation
- Enhancement Plan

Background

• QZSS-1 "Michibiki" launched in Sep. 2010

- LEX experimental signal channel
- 2 Kbps message band-width
- LEX experiments by JAXA, SPAC, GSI ...
- First phase LEX-PPP accuracy < 30 cm (H-RMS)
- Multi-GNSS Demonstration Campaign
 - MGA (Multi-GNSS Asia) activities started in 2010
 - Establishment of MGM (Multi-GNSS Monitoring) network
 - Demonstrations in various application areas
 - Regional workshops (Bangkok, Melbourne, Jeju, ...)

PPP (Precise Point Positioning)

Carrier-phase-based Single Positioning

- No need of reference stations nearby
- Global coverage world-wide
- Accuracy: sub-dm ~ cm-level
- Need precise satellite orbit/clock
- Applications (Expected)
 - Precision agriculture, machine control
 - Crustal deformation monitoring
 - Sea surface (Tsunami) monitoring
 - GNSS meteorology, LEO satellite POD

http://www.tsunamigps.com

Architecture for Real-Time PPP

MADOCA

Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis

- Precise Orbit/Clock Estimation for Multiple GNSS
 - Key-technology for precise positioning with GNSS
- Requirements
 - Satellites: GPS, GLONASS, QZSS and Galileo
 - Offline (FY23) and real-time (FY24) functions
- Goal of Orbit/Clock Accuracy
 - Offline : 3 cm/0.1 ns (GPS), 7 cm/0.25 ns (GLO/QZS)
 - Real-time: 4 cm/0.1 ns (GPS), 9 cm/0.25 ns (GLO/QZS)

MADOCA Block Diagram

Estimation Engine Design

Both of Batch and Real-Time Estimators

- Mostly shared models and libraries
- User-configurable with options file

Batch Estimator

- Iterated least square estimation
- Normal equation (NEQ) by Cholesky factorization
- Network mode ambiguity resolution (Ge et al., 2005)

Real-Time Estimator

- Extended Kalman filter (EKF)
- Details are under design

Batch Estimator Flow

Batch Estimator Block Diagram

Models

• Satellite Force Models

- Geopotential (EGM2008), Sun/Moon (DE421)
- SRP and eclipse, empirical-acceleration, relativity, ...
- Geodetic Models
 - IAU2000A/2006 nutation/precession (SOFA)
 - Earth tides based on IERS conventions 2010
- Measurement Models
 - undifferenced (ZD) carrier-phase and pseudorange
 - Troposphere , antenna phase center, phase wind-up,
 - Yaw-attitude for GPS, GLO, QZSS

Optimized SRP Models

Network Ambiguity Resolution

- Based on Ge et al., (2005)
- Modified to reduce CPU usage
- All baselines < 6,000 km, GPS and QZSS (no GLO)

Implementation

Implemented from Scratch

- Language: ANSI C + python
- Common Libraries + APs (application programs)
- Code size: ~ 15 K lines (without comments)
- Environment/Libraries
 - Linux (64 bit) + gcc, gfortran
 - RTKLIB, SOFA, IERS, Intel MKL (AVX supported)
 - Multi-threading by OpenMP for multi-core CPU

• To Reduce CPU Time

- Benchmark, profiling and optimized matrix handling

Evaluation for GPS/GLO

- 77 IGS Station (15 GPS, 52 GPS+GLO)
- Step 1: Orbit/Clock
 - Estimated: OBT, S/RCLK, STAPOS, TROPOS, AMB, EOP
 - Tight constrained: STAPOS (Fiducial), EOP(UT1)
 - Arc: 3H + 24 H + 3H, Interval: 300 s, 3 Iteration
- Step 2: 30 s Clock
 - Estimated: S/RCLK, AMB
 - Fixed: OBT, STAPOS, TROPOS, EOP by Step 1
 - Arc: 24 H, Interval: 30 s, 2 Iteration

Reference Stations for GPS/GLO

Option Settings

Option	Model/Setting	Option	Model/Setting
OBS Type	ZD-Phase + Code	Tidal Correction	IERS2010+FES2004
Data Span	3H+24H+3H/24H	3rd-Body	S+M+V+J (DE421)
Data Interval	300 s/30 s	Attitude Model	Precise Yaw
Elevation Mask	10 deg	SRP Model	Modified-DBY (7-par)
Sat-System	GPS+GLO	Empirical Accel	R/A/C, every 12H
Excluded Sats	Unhealthy	Station Position	Fiducial: ITRF (2mm)
Meas. Noise	3 + 3 mm/sin(EL)	Site Disp.	IERS2010+FES2004
Nutation	IAU2000A	Troposphere	GPT+GMF
Initial EOP	IGS ERP	Tropos. Param.	ZTD+Grad, every 2H
Geopotential	EGM2008 (Nmax=12)	Ambiguity	Fixed (<6000km, GPS)

Orbit Accuracy of GPS/GLO

Clock Accuracy of GPS

2011/1/1 - 12/31 (365 days), interval 300 s, wrt IGS Final

GPS Orbit/Clock Comparison

	Analysis Software	# of	Orbit RMS (cm)				Clock (ns)	
IGS AC		Stas	R	Α	С	3D	STD	RMS
	MADOCA 0.3.0	77	0.89	1.10	1.12	1.81	0.109	0.131
ESA	NAPEOS 3.5	110	0.97	1.33	1.09	1.98	0.116	0.183
CODE	Bernese 5.1	231	1.01	1.36	1.14	2.04	0.075	0.089
NGS	arc, orb, pages, gpscom	199	0.95	1.46	1.41	2.24	-	-
GFZ	EPOS.P.V2	191	1.15	1.64	1.59	2.56	0.146	0.169
MIT	GAMIT 10.33, GLOBK 5.16	263	1.37	2.12	1.39	2.88	0.277	0.316
NRCan	GIPSY/OASIS-II 5.0	91	2.58	1.72	1.77	3.57	0.128	0.148
JPL	GIPSY/OASIS-II 5.0	142	2.62	1.67	1.98	3.68	0.168	0.226
SIO	GAMIT 10.20, GLOBK 5.08	258	2.42	2.26	1.77	3.75	-	-
GRG	GINS, DYNAMO	134	2.47	2.80	1.74	4.12	0.172	0.212

2011/1/1 - 12/31 (365 days), interval 900/300 s, wrt IGS Final

GLONASS Orbit Comparison

IGS AC	Analysis Software	# of	Orbit RMS (cm)				Clock (ns)	
		Stas	R	Α	С	3D	STD	RMS
ESA	NAPEOS 3.5	110	1.40	3.09	2.20	4.04	-	-
	MADOCA 0.3.0	77	1.37	3.70	2.94	4.92	-	-
CODE	Bernese 5.1	231	1.68	4.17	3.87	5.94	-	-
IAC	STARK, POLAR	?	2.52	7.40	4.96	9.26	-	-
BKG	Bernese 5.1	139	3.10	8.00	4.19	9.55	-	-
GFZ	EPOS P.V2	191	2.81	13.03	2.62	13.59	-	-
МСС	STARK, POLAR	?	4.94	21.67	21.78	31.08	-	-
GRG	GINS, DYNAMO	134	6.35	48.45	5.21	49.14	-	-

2011/1/1 - 12/31 (365 days), Interval 900 s, wrt IGS Final

Kinematic PPP Accuracy

Kinematic PPP Comparison

Orbit/Clock	Analysis Softwara	Satallitas	RMS Error (cm)			
Of Dit/ Clock	Analysis Software	Satemites	E-W	N-S	U-D	
IGS Final	-	GPS	1.10	1.11	2.64	
MADOCA	MADOCA 0.3.0	GPS	1.11	1.12	2.72	
ESA	NAPEOS 3.5	GPS	1.15	1.23	2.82	
CODE	Bernese 5.1	GPS	1.15	1.29	2.84	
MIT	GAMIT 10.33, GLOBK 5.16	GPS	1.18	1.25	3.07	
NRCan	GIPSY/OASIS-II 5.0	GPS	1.29	1.56	3.05	
MADOCA	MADOCA 0.3.0	GPS + GLO	0.79	0.82	2.05	
ESA	NAPEOS 3.5	GPS + GLO	0.83	0.99	2.18	

IGS GRAZ, 2011/3/1 - 3/31 (31 days), interval: 30s, RTKPOST 2.4.2b

Evaluation for QZSS

- 12 QZSS MS (GPSR, QZSR) + 9 IGS Station
- Step 1: MS Coordinates
 - Estimated: STAPOS (MS), TROPOS, AMB
 - Tight-Constraint: STAPOS (IGS)
 - Fixed: GPS OBT/CLK (IGS), EOP (IGS)
- Step 2: QZSS Orbit/Clock
 - Estimated: QZS OBT/CLK, RCLK, TROPOS, AMB
 - Fixed: GPS OBT/CLK (IGS), EOP (IGS)
 - Tight-Constraint: STAPOS (MS) by Step 1 + Local Tie
 - Arc: 24H + 48H + 24H, Interval: 300 s, 3 Iteration

Reference Stations for QZSS

25

Orbit Overlap Error

24 H Overlap Error (Radial, Along-track, Cross-track)

Orbit Accuracy of QZSS

Enhancement Plan (FY24)

Galileo Support

– L1-L5 Iono-free LC, Galileo SRP Model

Real-Time Enhancement

- EKF based real-time clock estimation
- Combination to near-real-time orbit estimation
- Various formats support for real-time Multi-GNSS data
- Reduce end-to-end latency of correction messages
- LEX Message Generation
 - RTCM SSR based corrections generation
 - Dynamic satellite selection by visibility analysis

Real-Time Message Band-Width

Туре	GNSS	МТ	# of Sats	Size (bits)	Interval (s)	Rate (bps)
	GPS	1060	20	5728	15	381.9
Orbit/	GLONASS	1066	16	4573	15	304.9
Clock	QZSS	X+3	3	894	15	59.6
	Galileo	X+9	16	4592	15	306.1
	GPS	1062	20	608	5	121.6
High Rate	GLO	1067	16	477	5	95.4
Clock	QZSS	X+5	3	126	5	25.2
	Galileo	X+11	16	496	5	99.2
	GPS	1061	20	248	30	8.3
	GLO	1066	16	189	30	6.3
UKA	QZSS	X+4	3	72	30	2.4
	Galileo	X+10	16	208	30	6.9
Code Bias	GPS	1059	20	1408	30	46.9
	GLO	1065	16	813	30	27.1
	QZSS	X+2	3	246	30	8.2
	Galileo	X+8	16	1136	30	37.9
Code-Phase Bias	GPS, GLO,	X+12,	55	1946	30	64.9
Time Offset	GPS-GLO	X+16,	1	216	30	7.2
Total						1609.9

PPP-AR

• Ambiguity Resolution (AR) in PPP

- Improve convergence time
- Improve accuracy of positions (cm-class)
- Orbit quality is a key issue for successful PPP-AR
- Feasibility study is just started for GPS and QZSS
- No standard, message format should be investigated

• Proto-type Implementation Plan

- Offline-mode PPP-AR as first step
- Real-time PPP-AR as next step
- Need evaluation of long-time stability

Summary

MADOCA

- Multi-GNSS precise orbit/clock estimation
- For JAXA PPP experiment via QZSS LEX channel
- Key-technology for precise positioning with GNSS

• Development Status

- Offline functions are completed in FY23
- Orbit: GPS < 2 cm, GLO < 5 cm, QZS ~ 6 cm (3D-RMS)</p>
- PPP with GPS/GLO: ~ 1 cm (H-RMS), ~3 cm (V-RMS)
- Enhancement for real-time and Galileo in FY24
- PPP-AR features will be investigated