測位航法学会 GPS/GNSSシンポジウム2011

### マルチGNSS時代における 精密測位技術の展望と応用

Precise Positioning Technologies in "Multi-GNSS-Era"



# Multi-GNSS-Era

# Multi-GNSS-Era

|                          | Suctor  | Develop   | Satellite        | C/P | Signals      |              | Satellite |
|--------------------------|---------|-----------|------------------|-----|--------------|--------------|-----------|
|                          | System  | Operation | Orbit            | G/K | Frequency    | MUX          | Launch    |
| Receiption of the second | GPS     | US        | MEO              | G   | L1,L2,L5     | CDMA         | 1978-     |
|                          | GLONASS | Russia    | MEO              | G   | L1,L2,L3     | FDMA<br>CDMA | 1985-     |
| GALILEO                  | Galileo | EU        | MEO              | G   | E1,E5,E6     | CDMA         | 2011-     |
| *)                       | Compass | China     | MEO+GEO<br>+IGSO | G   | B1,B2,B3,L5  | CDMA         | 2007-     |
|                          | QZSS    | Japan     | IGSO             | R   | L1,L2,L5,LEX | CDMA         | 2010-     |
| ۲                        | IRNSS   | India     | GEO+IGSO         | R   | L5,S         | CDMA         | 2013-?    |
|                          | SBAS    | US,       | GEO              | R   | L1(,L5)      | CDMA         | -         |

## **GNSS Constellation**

| System  | 2011    | 2014    | 2017    | 2020    |
|---------|---------|---------|---------|---------|
| GPS     | 31 (+1) | 32      | 32      | 32      |
| GLONASS | 24 (+3) | 24 (+6) | 24 (+6) | 24 (+6) |
| Galileo | 0       | 12      | 27 (+3) | 27 (+3) |
| Compass | 8       | 12      | 30      | 35      |
| QZSS    | 1       | 3       | 4       | 7       |
| IRNSS   | 0       | 7       | 7       | 7       |
| SBAS    | 7       | 11      | 11      | 11      |
| Total   | 71      | 101     | 135     | 143     |



# iPhone 4S supports GLONASS !?



## **GPS+GLO+Galileo+Compass+QZSS**



## **RTK and PPP**

# **GNSS Signal Structure**



### **GNSS Receiver**



# **Code vs Carrier-Based Positioning**

|                   | Code-Based Positioning                                  | Carrier-Based Positioning                               |
|-------------------|---------------------------------------------------------|---------------------------------------------------------|
| Observables       | Pseudorange                                             | Carrier-Phase +<br>Pseudorange                          |
| Noise             | 30 cm                                                   | 3 mm                                                    |
| Multipath         | 30 cm - 30 m                                            | 1 - 3 cm                                                |
| Sensitivity       | High (<20dBHz)                                          | Low (>35dBHz)                                           |
| Discontinuity     | No Slip                                                 | Cycle-Slip                                              |
| Ambiguity         | -                                                       | Estimated/Resolved                                      |
| Receiver          | Low-Cost (\$100)                                        | Expensive (\$20,000)                                    |
| Accuracy<br>(RMS) | 3 m (H), 5 m (V) (Single)<br>1 m (H), 2 m (V) (DGPS)    | 5 mm (H), 1 cm (V) (Static)<br>1 cm (H), 2 cm (V) (RTK) |
| Application       | Air/Land/Marine Navigation,<br>LBS, Time Transfer, SAR, | Survey, Mapping,<br>Precision Ag, Construction          |

## **RTK: Real-Time Kinematic**

- Carrier-Based Relative Positioning
  - cm- level accuracy of moving receiver in real-time
  - Short TTFF by OTF ambiguity resolution (~10 s)
  - Narrow coverage (< 10 km from base)</li>



- Enhancement by Network-RTK
  - Multiple/networked sparse base stations
  - Spatial interpolation of error terms
  - Regional coverage (< 100 km from base)</li>

### **RTK for Vehicle Tracking**



2009/5/15 5:16-25, 20 Hz, RTKNAVI 2.4.0, GPS, Fix rate: 96.7%

## **PPP: Precise Point Positioning**

- Carrier-based Single Positioning
  - sub-dm cm-level accuracy by post processing
  - Need precise orbit/clock
  - Need dual-frequency for ionosphere elimination
  - Long TTFF due to float ambiguity (> 30 min)
  - Global coverage world-wide
- Applications
  - Crustal deformation monitor, GPS seismometer
  - GPS meteorology
  - POD of LEO satellite

# **Displacement by EQ with PPP**



http://earthquake.usgs.gov/earthquakes



IGS CONZ, Orbit/Clock: CODE/CODE-5 s 2010/2/27 6:28-6:45 1 Hz, RTKNAVI 2.4.0, Mode: Kinematic PPP + Combined, GPS

## Multi-GNSS-RTK

![](_page_14_Figure_1.jpeg)

### **GPS vs GPS+Galileo**

#### **RTK Performance: Baseline 13.3 km, Instantaneous AR**

|          |                | El Mask=15° |     |         | El Mask=30° |        |      |           |      |
|----------|----------------|-------------|-----|---------|-------------|--------|------|-----------|------|
| CDS      | Galileo        | Fixing      | RMS | S Error | (cm)        | Fixing | RMS  | 6 Error ( | (cm) |
| GFJ      | Gameo          | Ratio       | E-W | N-S     | U-D         | Ratio  | E-W  | N-S       | U-D  |
| L1       | -              | 49.7%       | 4.6 | 8.1     | 19.0        | 23.3%  | 71.4 | 115.0     | 289  |
| L1,L2    | -              | 99.0%       | 1.4 | 1.3     | 1.9         | 87.6%  | 3.4  | 10.5      | 15.5 |
| L1,L2,L5 | -              | 99.0%       | 1.4 | 1.3     | 1.9         | 87.3%  | 3.4  | 10.5      | 15.6 |
| L1       | E1             | 98.8%       | 1.3 | 1.2     | 1.9         | 90.1%  | 1.2  | 2.1       | 2.7  |
| L1,L2    | E1             | 98.9%       | 1.4 | 1.2     | 1.7         | 98.7%  | 1.2  | 1.0       | 1.6  |
| L1,L2,L5 | E1,E5a,<br>E5b | 98.9%       | 1.5 | 1.3     | 2.0         | 98.9%  | 1.3  | 1.1       | 1.8  |

## **Technology Evolution**

Long-range RTK Real-time PPP Ambiguity resolution in PPP Deeply INS/GNSS Integration

# **Long-Baseline RTK**

|       | BL             | Error Elimination               |               |                      |                          | Stratogy                      |  |
|-------|----------------|---------------------------------|---------------|----------------------|--------------------------|-------------------------------|--|
|       | (km)           | Ephem                           | lonos         | Tropos               | Others                   | Strategy                      |  |
| S     | 0-10           | Broadcast                       | -             | -                    | -                        | Conventional<br>RTK           |  |
| NЛ    | 10 -           | Broadcast                       | Dual-Freq     | -                    | -                        |                               |  |
| 1 V I | 100            |                                 | Interpolation |                      | -                        | Network RTK                   |  |
| L     | 100 –<br>1,000 | Real-time<br>Precise<br>(IGU)   | Dual-Freq     | Estimate<br>ZTD + MF | Earth<br>Tides           | Long-<br>Baseline<br>RTK      |  |
| VL    | >1,000         | Non-RT<br>Precise<br>(IGR, IGS) | Dual-Freq     | Estimate<br>ZTD + MF | Earth<br>Tides,<br>Ph-WU | Post-<br>Processing<br>or PPP |  |

# **Application of Long-Baseline RTK**

![](_page_18_Figure_1.jpeg)

![](_page_18_Picture_2.jpeg)

#### GPS Tsunami Monitoring System (Currently ~15 km off-shore)

http://www.tsunamigps.com

# **Strategy for Long-Baseline RTK**

- EKF-Based Parameter Estimator
  - DD measurement eq. without LC (linear combination)
  - Explicit estimation of ionosphere term
  - Precise correction: troposphere, antenna, earth tides ...
- Precise Orbit:
  - IGU predicted (accuracy ~ 5cm)
- AR Strategy
  - Search under ILS condition (not use rounding)
  - Partial fixing (elevation mask)
  - Tight constraint to once fixed ambiguities

### **Offline Test Results**

![](_page_20_Figure_1.jpeg)

21

### 2011 Tohoku-EQ by Long-BL-RTK

ing. lat. dep.len. wid. str. dip.rak.sip.opn.

![](_page_21_Figure_2.jpeg)

T.Kobayashi, Y.Ohta and S.Miura, JPGU, 2011

## **Coverage by Long-BL-RTK**

#### Baseline Length < 1,000 km

![](_page_22_Figure_2.jpeg)

# **Real-Time Orbit/Clock for PPP**

- Commercial real-time PPP via GEO satellite
  - StarFire, OmniSTAR, Seastar, VERIPOS, CenterPoint RTX
- IGS real-time pilot project (RTPP) via Internet
  - orbit: mostly fixed to IGU (IGS ultra-rapid ephemeris)
  - clock: estimated in real-time with IGS tracking N/W
  - distributed by NTRIP protocol
- PPP experiment via QZSS LEX
  - Conducted by JAXA
  - cm-level orbit/clock determination (2nd-phase)
  - GPS+GLONASS+Galileo+QZSS

# **Commercial Real-time PPP**

| Service               | Provider | Coverage                 | Broad-<br>cast  | Ref.<br>Stations | Orbit/<br>Clock | Engine                  | Accuracy                          |
|-----------------------|----------|--------------------------|-----------------|------------------|-----------------|-------------------------|-----------------------------------|
| StarFire              | NavCom   | World-<br>wide           | 3 GEO<br>L-band | 60               | 1 min/<br>1-2 s | JPL<br>RTG              | <10 cm H<br><15 cm V<br>(1 sigma) |
| OmniSTAR<br>XP/HP     | Trimble  | World-<br>wide<br>(Land) | 6 GEO<br>L-band | 100              | 1 min/<br>10 s  | Omni-<br>STAR           | dm-class                          |
| SeaSTAR<br>XP/G2      | Fugro    | World-<br>wide<br>(Sea)  | 6 GEO<br>L-band | 100              | 1 min/<br>10 s  | Fuguro/<br>ESOC<br>(G2) | dm-class                          |
| VERIPOS<br>Ultra/Apex | VERIPOS  | World-<br>wide           | 7 GEO<br>L-band | 80               | 30 s/<br>30 s   | JPL/<br>ESOC            | 10 cm H<br>20 cm V<br>(95%)       |

# **Ambiguity Resolution in PPP**

- Typical Strategy
  - Post Processing, Few Research for in Real-Time
  - Use Global Reference Stations Network
  - Fix Narrow-Lane Ambiguity with Iono-Free LC after Fixing Wide-Lane MW LC
  - Estimate Satellite Initial Phase Bias Assuming its Stability
  - PPP with Initial Phase Bias Correction
- Application
  - Precise Network Coordinates by Static-PPP
  - LEO Satellite POD, ...

### M.Ge et al., EGU 2007

![](_page_26_Figure_1.jpeg)

## **D.Laurichesse, ION 2010**

- Real-Time Implementation of PPP-AR
  - Network WL ambiguity fixing
  - Parameter estimation by EKF with iono-free code/phase: phase-clock, code-phase-bias, ZTD, station position, orbit correction to IGU, phase ambiguity
  - Orbit construction + high-rate clock generation
- Evaluation of Accuracy
  - Orbit: 4cm, code-clock: 5 cm, phase-clock: 1cm
- RT-PPP with AR ("CNES Integer PPP")
  - 1 cm HRMS

### **PPP-WIZARD by CNES**

![](_page_28_Figure_1.jpeg)

29

# **Mobile AP RTK/PPP: Issues**

- Cycle Slips
  - Frequent cycle slip with around obstacles
  - Miss-detection of cycle slip
- Low Solution Availability
  - Long acquisition time by weak signal (Low C/N0)
  - Half-cycle ambiguity resolution with Costas PLL
  - Low fixing ratio
- High Noise Level
  - High multipath level in carrier-phase
  - Jamming by RFI

# **Cycle Slip**

![](_page_30_Figure_1.jpeg)

# **INS/GNSS Integration**

![](_page_31_Figure_1.jpeg)

# "CM-Level Accuracy Anywhere"

# **Technologies in 2011**

|              | Target                     | Conventional Technologies in 2011             |                            |  |  |
|--------------|----------------------------|-----------------------------------------------|----------------------------|--|--|
|              | Requirement                | RTK                                           | РРР                        |  |  |
| Coverage     | Global<br>(world-wide)     | <100 km<br>from nearest base                  | Global<br>(world-wide)     |  |  |
| Dynamics     | Stationary - Space         | Static - Kinematic                            | Static - Kinematic         |  |  |
| Accuracy     | 1 cm (HRMS)<br>2 cm (VRMS) | 1 cm (HRMS)<br>2 cm (VRMS)                    | 2 cm (HRMS)<br>5 cm (VRMS) |  |  |
| Availability | 99 % (open sky)            | 95 % (open sky)                               | ?                          |  |  |
| Availability | 95 % (urban)               | 30 % (urban)                                  | ?                          |  |  |
| Latency      | 1 s                        | 1 s                                           | 2 days - 2 weeks           |  |  |
| TTFF         | 10 s (land)<br>1 min (sea) | 10 s (dual-freq)<br>5 min (single-freq)       | > 30 min                   |  |  |
| User Cost    | < \$100                    | \$20,000 (dual-freq)<br>\$2,000 (single-freq) | \$20,000 (Dual-freq)       |  |  |

# **Technologies in 2020**

|                                 | Requirement                | Technologies in 2020                                                         |
|---------------------------------|----------------------------|------------------------------------------------------------------------------|
| Coverage Global<br>(world-wide) |                            | RT-Orbit/Clock with AR,<br>Broadcast via Internet + GEO/QZSS Satellite       |
| Dynamics                        | Stationary - Space         | Static - Kinematic                                                           |
| Accuracy                        | 1 cm (HRMS)<br>2 cm (VRMS) | Local iono/tropos corrections (land)<br>Iono estimation by triple-freq (sea) |
| A                               | 99 % (open sky)            | 30 sats + triple-freq                                                        |
| Availability                    | 95 % (urban)               | 30 sats+INS-aided PLL, slip-resistant                                        |
| Latency                         | 1 s                        | Real-time corrections                                                        |
| TTFF                            | 10 s (land)                | Local iono/tropos corrections                                                |
|                                 | 1 min (sea)                | Iono estimation by triple-freq                                               |
| User Cost                       | < \$100                    | No patent problem, need killer-AP                                            |