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ABSTRACT 
 
The performance of RTK with long baseline over 100 km 
is much degraded compared to conventional short-range 
RTK. The authors have developed a new strategy for such 
long baseline RTK applicable to up to 1,000 km baselines. 
The strategy consists of an EKF-based parameter 
estimator without generating any linear combination of 
the measurements. The strategy also includes the integer 
ambiguity resolution in carrier-phase measurements with 
the partial fixing feature and tight constraints to once 
fixed integer ambiguities. To verify and demonstrate the 
proposed strategy, we conducted some online tests and 

online real-time tests for the various baseline lengths in 
the range of from 29.9 km to 1,099.9 km. The results of 
these tests indicates that the proposed strategy works well 
up to 1,000 km baseline. The performance of such the 
long baseline RTK, however, is degraded especially in 
summer time. Further improvement is necessary to 
establish the strategy as a reliable and robust technique. 
 
 
INTRODUCTION 
 
RTK (real-time kinematic) is one of the most precise 
positioning technique with GNSS (global navigation 
satellite system). Users of RTK can easily obtain cm-level 
accuracy of user positions in real-time by using the 
measurements of GNSS signals received both at the user 
receiver and at the base station [1]. It is well known that 
the performance of RTK much depends upon baseline 
length defined as the distance between the user receiver 
and the base station. Table 1 shows the various lengths of 
baselines and RTK strategies applied to such baselines. In 
the case of RTK with a short baseline under 10 km, errors 
of satellite ephemerides, effects of ionosphere and 
troposphere are almost eliminated by forming DD 
(double-difference) measurement equations. With a 
medium length baseline under 100 km, in particular 
ionosphere effects are hard to be canceled by DD. In this 
case, dual-frequency measurements are often used to 
eliminate the ionosphere effects. With such a baseline 
range, it is also popular to cancel out the various error 
terms with corrections generated by interpolation of the 
residuals at multiple base stations around the user receiver. 
This network-RTK technique has been well verified and 
demonstrated by a lot of field experiments in previous 
researches [2]. At this moment, several commercial 
precise positioning services with GNSS based upon such 
the network-RTK systems have been already started and 
widely utilized by many users. 
 
With a further longer baseline over 100 km, however, the 
RTK positioning still faces many difficulties compared to 
conventional ways mentioned above. The error terms in 



the DD equation caused by broadcast ephemeris errors, 
troposphere delay and earth tides effects are not negligible 
for such a longer baseline. It is necessary to model the 
error terms carefully in measurement equation. Some of 
them are necessary to be estimated as additional unknown 
parameters. It is also hard to resolve integer ambiguities 
in the carrier-phase observables into proper values 
reliably and robustly due to these remaining errors. The 
longer initialization time is another issue especially to  
determine moving receiver's position in such long 
baseline RTK environment. A special integer ambiguity 
resolution strategy would be needed to reduce the 
initialization time under such condition. 
 
Typical and promising applications of the long baseline 
RTK can be found on the sea. We usually can't find a 
fixed and stable base station for the short baseline RTK on 
vast ocean except nearby the coast. For example, the 
tsunami monitoring with GNSS has already been 
developed in Japan [3]. The system includes a 
GNSS-equipped buoy placed on open ocean. The buoy 
transmits GNSS observation data to a base station settled 
on the ground nearby the sea and the station computes 
precise buoy positions in real-time by using the RTK 
technique in order to detect coming tsunami. The 
anchored point of such the buoy, however, is currently 
only under about 15 km apart from the coast. It is mainly 
because of the baseline length limitation of the 
conventional RTK technique. The limitation also forces 
need of a lot of GNSS buoys to cover all extended coast 
lines around the island. The shadowed area on the map in 
Figure 1 shows the coverage of the long baseline RTK 
near Japan, where we can find the nearest GNSS base 
station on the ground with 100–1,000 km baseline. As 
shown in the figure, if RTK provided sufficient and stable 
performance to measure precise variation of the buoys on 
the sea even with such long baseline, an very efficient 
tsunami warning system could be realized with minimum 
number of GNSS-buoys to mitigate tsunami disaster. The 
strong motivation of this research work is to develop  

 
practical long baseline RTK technique for such promising 
applications. 
 
 
INTEGER AMBIGUITY RESOLUTION FOR LONG 
BASELINE RTK 
 
AR (ambiguity resolution) is a key technique to obtain 
rapid and precise solutions by RTK. In this section, firstly 
we briefly review the existing AR strategies for precise 
kinematic positioning with GNSS. Table 2 shows the 
various LCs (linear combinations) used for precise 
positioning with GNSS, where k  and kP  show 
carrier-phase and pseudorange observables of kL  

Table 1: Baseline Lengths and RTK Strategies 

Baseline Length 
Error Elimination 

RTK Strategy 
Ephemeris Ionosphere Troposphere Other Errors 

Short 0 – 10 km Broadcast - - - Conventional 
RTK 

Medium 10 – 100 km Broadcast 
Dual-frequency - - 

Interpolation - Network RTK 

Long 100 – 1,000 km 
Real-time 

precise (IGU) 
Dual-frequency

Estimate ZTD+ 
mapping function

Earth tides 
Long-baseline 

RTK 

Very long >1,000 km 
Non-real-time 

precise (IGR, IGS) 
Dual-frequency

Estimate ZTD+ 
mapping function

Earth tides, 
phase windup 

Post-processing 
or PPP 

 

Figure 1. Area covered by long baseline RTK near Japan. The 
shadowed region indicates the area where we can find the 

nearest base station on the ground with 100–1,000 km baseline.

1,000 km 



frequency. For short baseline RTK, original observables 
L1, L2, P1 and P2 without LC are generally used to 
obtain the solutions. Recently many efficient and reliable 
algorithms have been developed as OTF (on the fly) AR 
technique for such the short baseline RTK. The most 
popular algorithm among them is well known as 
LAMBDA [4], which consists of the reduction step to 
shrink the search space of a integer vector by a linear 
transformation and the skillful tree search procedure of 
the integer vector under ILS (integer least square) 
condition. In the procedure, ionosphere effects in the 
measurement equations are assumed to be eliminated by 
double-differencing. It is hard to apply the strategy 
without any modification to long baseline RTK up to 
1,000 km, where large ionosphere residuals remain. 
 
On the other hand, for conventional medium or long 
baseline post-processing, so-called ionosphere-free LCs 
are often utilized. L3 shown in Table 2 indicates 
ionosphere-free LC of L1 and L2 carrier-phases, in which 
the ionosphere term is almost canceled. The ambiguity 
term, however, can't be separated into L1 and L2 terms. 
So it is impossible to resolve the carrier-phase ambiguity 
into an integer value without additional information. To 
resolve the ambiguity, another LC so-called MW 
(Melbourne-Wübbena) wide-line LC defined in Table 2 is 
often used. The LC cancels out not only the ionosphere 
term but also geometry and troposphere terms. So we can 
obtain an estimated integer wide-line ambiguity simply by 
averaging the LC and rounding the average to the nearest 
integer. Once the wide-lane ambiguity obtained, we can 
estimate the narrow-lane ambiguity as well as other 
unknown parameters with L3 LC measurement equations 
and the fixed wide-lane ambiguity. After that, the 
estimated narrow-lane ambiguity is also rounded to the 
nearest integer [5]. 
 
One of problems in applying such conventional 

post-processing AR algorithm to the long baseline RTK is 
slow convergence time of the estimated ambiguity. 
Strictly speaking, the convergence time is a function of 
the reliability of the integer ambiguity resolved. To fasten 
the convergence time, the reliability decreases. To 
improve the reliability, the longer convergence time is 
needed. Assuming zero-mean Gaussian error distribution, 
theoretically, ILS condition assures the maximum 
probability to provide proper integer vector. The 
conventional sequential rounding scheme of wide-lane 
and narrow-lane ambiguities does not provide the 
optimum performance. To improve the conventional way, 
alternative ionosphere-free LCs as shown in Table 2 can 
be employed with the integer vector search under the ILS 
condition. However, the ionosphere-free LC also adds the 
measurement noise to the original measurement as shown 
in Table 2. It means that the error of the estimated user 
positions also increases especially in the kinematic mode. 
For the long baseline RTK, the strategy without LC is 
clearly better than that with LC. 
 
Considering the problems of existing AR strategies as 
mentions above, we propose a new AR strategy for the 
long baseline RTK in this study. In this strategy, we form 
no linear combination and use only original observables 
of carrier-phases and pseudoranges in order to suppress 
the measurement noise. The ionosphere terms, which are 
not canceled by DD measurement equations in the case of 
the long baseline, are explicitly estimated as unknown 
parameters by EKF (extended Kalman filter) [6] as well 
as other unknowns. The estimated float ambiguities by 
EKF are resolved by existing efficient integer vector 
search strategy under ILS condition. For the integer vector 
search, we employs well known LAMBDA and its 
extension MLAMBDA [7] in this study. 
 
 
 

Table 2. Various LCs (Linear Combinations) of GNSS Observables for Long Baseline Relative Positioning 

Liner 
Combination 

Coefficients of LC Coefficients of Terms in DD Equation Typical 
DD Noise 
 (cm) 

Notes 
Φ1 Φ2 P1 P2  + T I1 N1 N2 

L1 λ1   
1 –1 λ1 0.6 

Original 
Observables 

L2 
 

λ2  
1 –γ λ2 0.6 

P1 
  

1 1 1 60 

P2 
   

1 1 γ 60 

L3 C1λ1 C2λ2  
1 0 C1λ1 C2λ2 1.8 Ionosphere- 

Free LC MW λWL –λWL –λNL/λ1 –λNL/λ2 0 0 λWL –λWL 42 

(L1+P1)/2 λ1/2 
 

1/2 1 0 λ1/2 30 Alternative 
Ionosphere- 

Free LC (L2+P2)/2 
 

λ2/2 
 

1/2 1 0 λ2/2 30 

λ1 = 19.0 cm, λ2 = 24.4 cm, λWL = 86.2 cm, λNL = 10.7 cm, γ = f1
2 / f2

2, C1 = γ / (γ – 1), C2 = –1 / (γ – 1) 



EKF FORMULATION OF LONG BASELINE RTK 
 
In this section, we introduce detailed formulations of EKF 
for the long baseline RTK with estimation of ionosphere 
and troposphere terms. By using EKF, a state vector x  
and its variance-covariance matrix P  can be estimated 
with a measurement vector ky  at an epoch kt  by: 
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where )(xh , )(xH  and R  are the measurements 
model vector, the matrix of partial derivatives and the 
covariance matrix of measurement errors, respectively. 
Assuming the system-model linear, the time update of the 
state vector and its covariance by EKF is expressed as: 
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where: 
1k

kF  : state transition matrix from kt  to 1kt  
1k

kQ  : covariance matrix of system noise 
 
For the long baseline RTK between the rover r  and the 
base station b , the following measurement equations can 
be formed. In these equations, the satellite and receiver 
clock biases, satellite and receiver initial phases offsets in 
the carrier-phase observables are almost perfectly 
eliminated by double-differencing technique. 
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where: 

ij()   : single-difference between satellite i  and j  

rb()   : single-difference between receiver r  and b  

,
i
r k   : kL carrier-phase measurement (cycle) 

,
i

r kP   : kL pseudorange measurement (m) 
i
r  : geometric range between satellite and receiver 

  antenna phase center (m) 

,
i
r kI   : kL ionosphere delay (m) 
i

rT   : troposphere delay (m) 

k    : kL carrier wave length (m) 

,
i
r kN   : kL carrier-phase ambiguity (cycle) 

 , P : measurement errors of carrier-phase and  
   pseudorange (m) 

 
The unknown state vector x  for the long baseline RTK 
with dual-frequency GNSS observables is defined as: 
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Note that single-difference is used instead of 
double-difference for carrier-phase ambiguities to avoid 
the hand-over problem of reference satellites. The 
measurement vector y  is also defined with 
double-differenced carrier-phase and pseudorange 
measurements as: 
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By using equation (3), the measurement model vector 

)(xh  and the matrix of partial derivatives )(xH  can be 
written as: 
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where: 

ir  : satellite i  center of mass position (m) 
ia  : satellite i  antenna phase center offset (m) 
ip  : satellite i  antenna phase variation (m) 

rr  : receiver r  antenna position (m) 



ra  : receiver r  antenna phase center offset (m) 

,r tide r  : receiver r  displacement by earth tides (m) 

rp  : receiver r  antenna phase center variation (m) 
i
re  : unit LOS (line-of-sight) vector from receiver r  

  to satellite i  
,i i

r rAz El : azimuth and elevation of satellite i  from 
  receiver r  (rad) 

,T rZ   : tropospheric zenith total delay (m) 

,H rZ  : tropospheric zenith hydrostatic delay (m) 

,E rG   : east component of tropospheric gradient 

,N rG  : north component of tropospheric gradient 

, ,,i i
H r W rm m : mapping function for hydrostatic and wet 

   tropospheric delay 
i
Im   : mapping function for ionospheric delay 

1 2
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rb rb rbI I II : single-differences of 1L vertical 
  ionospheric delay (m) 
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D  : single-differencing matrix 

 
The covariance matrix of the double-differenced 
measurement errors is also expressed as: 
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where: 

,
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k , ,
i
P k  : standard deviation of kL  carrier-phase 

   and pseudorange measurement error (m) 
  

The time update of EKF is expressed by equation (2) 
with: 
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where: 

kkr tt  1  : receiver sampling interval (s) 

vuvnve  ,,  : standard deviations of east, north and up 
   component of the rover velocity system noise 
   (m/ s ) 

,I TQ Q : covariance of process noise for ionosphere and  

 troposphere terms 
 

By solving the EKF formula (1), (2) with the RTK-GPS 
equation (4)-(9), the estimated rover antenna position, 
velocity and float carrier-phase ambiguities can be 
obtained. 
 
In the strategy, the estimated states by EKF include the 
rover receiver ECEF position, single-differenced slant 
ionospheric delay for each satellites, tropospheric ZWD 
(zenith wet delay) and gradient parameters at the rover 
and base-station sites and float ambiguities for 
dual-frequency carrier-phases. It intends to utilize 
real-time precise satellite orbit provided IGS to suppress 
the ephemeris errors. It also uses single-layer MF 
(mapping function) for ionosphere and popular NMF for 
troposphere. The temporal variations of the ionosphere 
and troposphere terms are simply modeled as 
random-walk. 
 
After obtaining the float estimated states by EKF, we 
transform the single-differenced ambiguities to 
double-differenced form as:. 
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In this forms, the best integer vector N


 for the 

double-differenced carrier-phase ambiguities is searched 
to satisfy the condition of ILS (integer least square) 
problem as: 
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To solve the problem, a well-known efficient strategy 
LAMBDA and its extension MLAMBDA are employed in 
this study. After the validation by the simple ratio-test, the 
fixed solution of the real parameter vector R  including 
the rover position are obtained by solving the following 
equation. 
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IMPROVMENT OF FIXING RATIO 
 
According to the details described in previous section, we 
implemented the long baseline RTK strategy and made 



some tests with real measurement data. With simple 
implementation, however, we did not obtain adequate 
performance for both initialization time and fixing ratio. 
Figure 1 shows an example of the result with 300 km 
baseline by simple implementation of the strategy. The 
upper plots indicate E/N/U components of the solutions 
errors. The green dots show the fixed solutions after the 
validation by the ratio-test with the critical value of 3. The 
E/N/U standard deviations of the solutions are 2.2 cm, 2.3 
cm and 3.2 cm respectively. The fixing ratio is only 
46.4 %. 
 
Such low fixing ratio seems mainly due to the satellites 
which are newly rising from the horizon. The 
carrier-phase ambiguities for such satellites usually need 
longer convergence time after they firstly become visible 
especially in longer baseline environment. The 
un-converged ambiguities often disturb the other 
ambiguity fixing by search type AR strategy under ILS 
condition, which assumes all of ambiguities are resolved 
together at the same time. If some estimated float 
ambiguities have large residuals, the validation process 
rejects the fixed solution because of biased. Not all the 
ambiguities, however, must be fixed in the same time. It is 
just a trade-off problem between the accuracy of the 
solutions and the fixing ratio. 
 
To improve the situation, "partial fixing" strategy is 
introduced in this study. It means that only the some 
partial portion of all ambiguities are resolved into integer 
values. Other ambiguities except for the fixed are still 
pending as float values. Some criteria to decide whether a 
ambiguity should be fixed or float can be considered. The 
criteria include the variance of estimated ambiguity, 
duration of continuous valid data and so on. After some 
experimental evaluations for the issue, we decided to 

employ a very simple criterion involving the satellite 
elevation angle. If a satellite is under a threshold of the 
elevation, the ambiguities of the satellite are not fixed. 
Only the ambiguities of satellites over the threshold are 
resolved to integer. In this scheme, we can separates the 
ill-conditioned ambiguities and hold them as float values. 
The partial fixing improves availability of (partially-) 
fixed solutions in exchange for a little degradation of the 
accuracy of the solutions.  
 
Another improvement is "fix and hold" mode for integer 
ambiguity resolution. That means tight constraint to fixed 
ambiguities. At first, estimated float ambiguities are 
resolved by the usual way but once the integer solutions 
are verified by the validation process, the tight constraint 
to the integer solutions is introduced into the next update 
of the filter. An fixed ambiguity is held to an integer value 
until a cycle-slip occurs or the filter diverged with large 
residuals. We call this behavior "fix and hold" mode. We 
expected these features much improve the initialization 
time and the fixing ratio for long-baseline RTK. 
 
Figure 2 shows the results by the improved long baseline 
RTK strategy including "partial fixing" and "fix and hold 
mode". The E/N/U standard deviation of the solution are 
1.1 cm, 1.9 cm and 3.5 cm respectively. The fixing ratio is 
much improved to 99.3 %. The figure clearly shows the 
proposed strategies are effective to enhance the 
initialization performance and fixing probability. 
 
 
IMPLEMENTATION OF LONG BASELINE RTK 
 
According to the strategy described in previous sections, 
we implemented the algorithm of the long baseline RTK. 
We already have RTKLIB, which is an open source 

Figure 2. E/N/U errors (upper) and ratio factor of ratio-test 
(lower) with 300 km baseline by improved long baseline RTK 

strategy with "partial fixing" and "fix and hold mode". The 
threshold of the elevation to fix ambiguities is set to 25°.

Figure 1. E/N/U errors (upper) and ratio factor of ratio-test 
(lower) with 300 km baseline by simple implementation of 

proposed long baseline RTK strategy 



program package for RTK developed by the authors [8]. 
RTKLIB already supports various standard messages 
defined by RTCM v.2 [9] or RTCM v.3 [10], and 
proprietary message formats supported by some GNSS 
receivers. The raw observation data streams of the rover 
and the base station can be input from remote sites via 
Internet by using standard TCP/IP or NTRIP [11] for the 
RTK positioning in real-time. 
 
We also implemented some feathers in RTKLIB to 
support the long baseline RTK in addition to the RTK 
strategy itself mentioned above. The features include the 
handling of IGS [12] real-time precise orbit (IGS 
ultra-rapid ephemeris) and the automatic download of the 
SP3-c files of the precise ephemeris from the IGS data 
server. For the test and the evaluation, we also 
implemented the long baseline RTK strategy in 
post-processing mode as well as in real-time mode. We 
can input observation data and navigation data of the 
rover and the base station as standard RINEX [13] files 
and obtain the post-processing solutions as same as in 
real-time. The latest version of RTKLIB used for the 
evaluation was 2.4.1b. The stable version of RTKLIB 
supporting such long baseline RTK strategy will be 
released still as an open source program package by the 
end of 2010 at the web site for RTKLIB [14]. 
 
 
OFFLINE TEST OF LONG BASELINE RTK 
 
To verify and evaluate the performance of the proposed 
long baseline RTK strategy, we conducted some 
experiments. At first, we made the offline test by using 
the post-processing mode with various lengths of 
baselines up to 1,100 km. We gathered RINEX 
observation data of GEONET, which is the Japanese 
dense CORS (continuous operating reference stations) 
network containing over 1,200 GNSS tracking stations 
distributed all over Japan [15]. Among all of the 
GEONET stations, we selected 2110 Tsukuba1 for the 
base station located around the center of Japanese island. 
We also selected 477 GEONET stations for the rover and 
formed 477 baselines between the rovers and the base 
station. The baseline lengths were distributed from 29.9 
km to 1,099.9 km. Figure 2 shows the locations of such 
GEONET stations and the baselines for the offline test. 
 
For the offline test, we used RTKLIB AP (application 
program) RTKPOST. RTKPOST supports various 
positioning mode including the carrier-phase based 
relative kinematic positioning as same as the algorithm 
for the long baseline RTK described above. We input 
RINEX observation data and navigation data received at 
the selected GEONET stations to RTKPOST. Concerning 
the satellite ephemeris, we downloaded the IGU (IGS 

ultra-rapid)  precise ephemeris and extracted only the 
predicted part from the SP3 file. The detailed option 
settings for RTKPOST are summarized in Table 3. To 
investigate the seasonal variation of the RTK performance, 
we used two data sets for the offline test. 
 
 

 
Figure 3. Baselines for offline test of long-baseline RTK Circles 

show the distances from the base-station 2110 Tsukuba 1 
 

Table 3. Option settings of RTPOST for the offline test to 
evaluate proposed long baseline RTK strategy 

Option Setting 

Positioning Mode Kinematic 

Frequencies L1+L2 

Receiver Dynamics OFF 

Earth Tides Correction ON 

Elevation Mask 7° 

Ionosphere Correction Estimate STEC 

Troposphere Correction Estimate ZTD + Gradient 

Satellite Ephemeris Precise 

Ambiguity Validation Threshold 3.0 

Min Elevation to Fix Ambiguity. 25° 

Min Elevation to Hold Ambiguity 35° 

Code/Carrier-Phase Error Ratio 100 

Carrier Phase Error 0.003 + 0.003 / sin El m 

Process Noise of Vertical Iono. Delay 10 -3 m / sqrt(s) 

Process Noise of ZTD 10 -4 m / sqrt(s) 

Satellite Antenna Model IGS05.ATX 

Receiver Antenna Model IGS05.ATX 

 
 

One was a week data on January 1-7, 2009 for the test in 
winter. Another was the same duration data set on July 1-7, 
2009 for summer. The sampling interval of the 

Base station: 
2110 Tsukuba1 



measurements for the both data sets was 30 s. Note that 
2009 was the a silent year in terms of solar activity. The 
ionospheric condition might be fine compared to the 
averaged year. The performance of the long baseline RTK 
would be much degraded with ionosphere disturbance 
induced by higher solar activity. 
 
Figure 4 shows an example of the test result as the errors 
of position solutions with a 471.2 km baseline. The east, 

north and up standard deviation were 0.7 cm, 0.9 cm and 
2.3 cm for the January data set, and 1.1 cm, 1.3 cm and 
3.8 cm for the July data set, respectively. The fixing ratio 
were also 99.8 % and 99.0%, respectively. Figure 5 shows 
all of the offline test results of the winter case as the plot 
of standard deviations and fixing ratios corresponding to 
the baseline lengths. Figure 6 also shows the results of 
summer case. Table 4 summarize the offline test results as 
the averaged fixing ratio and standard deviation of 477 

Figure 4. E/N/U errors of the offline test results for long baseline RTK strategy with 471.2 km baseline  
(left: January 1-7, 2009, right: June 1-7, 2009),  

Figure 5. Standard deviation (upper) and fixing ratio (lower) of the offline test results for the long-baseline RTK strategy 
corresponding to their baseline lengths (left: January 1-7, 2009, right: June 1-7, 2009) 



baselines. 
 
As shown in the table, the proposed strategy for long 
baseline RTK seems to work well even over 1,000 km 
baseline. However the RTK performance both of the 
standard deviation and fixing ratio clearly degraded in 
summer season compared to in winter especially with 
longer baselines over 500 km. The maximum water vapor 
content in atmosphere increases due to higher temperature 
in summer. The larger variation of such water vapor 
content might cause the large errors in tropospheric 
corrections and degrade the long baseline RTK 
performance. More strict and fine modeling of 
troposphere is necessary to improve the performance for 
summer season. 
 

Table 4. Summary of results of the offline test of the 
long-baseline RTK 

Data Set 
Average 
of Fixing 

Ratio 

Average of Standard Deviation

E-W N-S U-D 

January 1-7, 
2009 

97.8% 0.7 cm 0.9 cm 2.6 cm 

July 1-7, 
2009 

93.4% 1.4 cm 1.6 cm 5.2 cm 

 
 
REAL-TIME TEST OF LONG BASELINE RTK 
 
To evaluate and demonstrate the proposed strategy for the 
long baseline RTK in real-time environment, we also 
conducted the real-time test. Figure 6 shows the 
configuration of the real-time test. For the test, NovAtel 
dual-frequency GNSS antenna and receiver were used as 
the rover receiver. IGS MIZU and SUWN real-time 
stations were used for the base stations. Figure 7 shows 
the locations of the rover receiver and the base stations. 
The baseline lengths were 435.7 km and 1,024.8 km for 

the base station MIZU and SUWN, respectively. The 
real-time AP RTKNAVI in RTKLIB ver. 2.4.1b was 
installed in a PC and used as the real-time RTK client 
software the test. RTKNAVI connected by NTRIP ver. 1.0 
protocol to BKG NTRIP broadcaster provided by IGS to 
receive the real-time streams of 1Hz base station data in 
RTCM ver. 3.1 type 1004 messages. RTKNAVI also 
automatically download the newest IGS ultra-rapid (IGU) 
precise ephemeris (IGU) from NASA GSFC CDDIS 
server every 6 hours. The real-time test was conducted for 
72 hours from 12:00 GPST on September 17, 2010 to 
12:00 GPST on September 20, 2010.  
 
Figure 8 shows the real-time test results as the E/N/U 
error plot of solutions for both of 435.7 km and 1024.8 
km baseline cases. The E/N/U standard deviations were 
3.0 cm, 2.7 cm and 7.4 cm for the 435.7 km baseline and 
3.3 cm, 2.9 cm and 7.9 cm for the 1024.8 km baseline . 
The fixing ratio are 93.5 % and 56.9 %, respectively. 
 
 

 
Figure 7. Locations of the rover and the base stations for the 

real-time test for the long baseline RTK strategy. 
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Figure 6. Configuration of the real-time test for the long baseline RTK strategy.  
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According to the test results, both of the precision of the 
RTK solutions and the fixing ratio in real-time 
environment were worth than the offline results in 
summer time. A reason of the degradation of the long 
baseline RTK solutions is considered the latency of the 
base station data. In this real-time, the latency of the 
real-time streams of the base station data was 1 s to 6 s. It 
often took over 10 s. The latency the data transmission 
between the rover and the base station derives the 
additional errors caused by the satellite onboard clock 
drift and ionosphere temporal variation of ionosphere or 
troposphere. Another possibility is miss-modeling of 
measurement errors. In the current long baseline RTK 
strategy, the errors at different epochs are not assumed to 
have any correlation each other. In the condition with the 
sampling interval 30 s for the offline test, the correlation 
can be generally neglected. With the sampling interval of 
1 s, however, the correlation is not negligible. More 
realistic modeling for such time-correlated measurement 
errors is necessary for such higher sampling rate. In 
addition to the latency and the time-correlation, the 
multipath effect of the rover antenna is also one of the 
possibilities of the performance degradation. Further 
investigation the details of error sources are needed to 
improve the long baseline RTK in real-time environment. 
 
 

CONCLUSION AND FUTURE WORKS 
 
In this study, we proposed a new strategy for the long 
baseline RTK up to 1,000 km baseline without generating 
any linear combination of measurement of GNSS signals. 
The strategy also includes an integer ambiguity resolution 
optimized for long baseline RTK with existing error 
sources. To verify and demonstrate the strategy, we 
conducted some tests in various baseline lengths up to 
1,100 km both in offline mode and real-time mode. 
According to the test results, the proposed strategy for 
long baseline RTK works well. The solutions, however, 
are degraded in summer time. And real-time case is harder 
to get better solutions than offline test. Further 
investigation and improvement are necessary to establish 
the more reliable and practical strategy for long baseline 
RTK.  
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