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ABSTRACT

It has been considered that low-cost single-frequency
GPS antenna and receiver are not applicable to precise
positioning by RTK-GPS. In this study, to confirm the
RTK-GPS performance with such low-cost antenna and
receiver, some field tests were conducted. At first, by
using the field calibration method, the antenna PCV
(phase center variation), carrier-phase multipath and code
multipath were measured with various combination of
antennas and receivers. Next, the RTK-GPS performance,
including the positioning accuracy, fix-rate and TTFF for
ambiguity resolution, was evaluated. According to the
results of the experiments, these antenna and receiver are
feasible for RTK-GPS but some attention should be paid
for practical performance.

INTRODUCTION

RTK-GPS (realtime kinematic GPS) is one of the most
precise positioning technologies, with which users can
obtain cm-level accuracy of the position in real-time by
processing carrier-phase measurements of GPS signals. It
is generally considered that geodetic-grade dual-
frequency GPS antenna and receiver are necessary to
achieve practical performance of RTK-GPS. Low-cost
single-frequency GPS antenna and receiver are not
applicable to RTK-GPS because of their poor
performance. However, geodetic-grade antenna and
receiver have been still expensive compared to consumer-
grade ones. This is one of the reasons why RTK-GPS is
still not popular and is utilized only for limited
applications like land survey. If the low-cost antenna and
receiver were available for RTK-GPS, larger number of
users, who need more precise positions, would intend to
use the technique. More applications of RTK-GPS,
currently not applicable due to cost issues, would become
practical. The objective of this study is to evaluate the
performance of RTK-GPS with low-cost single-frequency
antenna and receiver and to clarify issues to apply them to
RTK-GPS.

EVALUATION OF ANTENNAS AND RECEIVERS
BY FIELD CALIBRATION

The field calibration is often used for evaluation of GPS
antennas. According to the technique, a target antenna is
mounted on a field with good sky view. A reference
antenna is placed in the vicinity of the target as well. Both
of the antennas are connected to receivers to record raw
measurement data of GPS signals in a certain period
typically 24 hours. Recorded data are processed together
by a post-mission analysis to obtain the antenna phase
center position and PCV. In this study, some field tests
were conducted to evaluate the performances of low-cost
antenna and receiver with the method. In addition to the
antenna phase center position and PCV, carrier-phase
multipaths and code multipaths were also extracted in the
same time. By using dual-frequency antenna and receiver
as reference, the characteristics of single-frequency
antenna and receiver were obtained. Figure 1 shows the



configuration of the field test. The target antenna was
mounted on a ground-plane of 21 cm diameter to suppress
multipaths. The baseline length between the target and the
reference antennas was approximately 1 m. For each
combination of antenna and receiver, raw GPS
measurement data are sampled at the rate of 1 Hz for 24
hours. The recorded raw measurement data were analyzed
to evaluate the performance of antenna and receiver by
the following way.
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Figure 1. Configuration for evaluation of the antenna and
receiver performance by field test

ESTIMATION OF ANTENNA PHASE CENTER/
VARIATION AND CARRIER-PHASE MULTIPATH

By using EKF (extended Kalman filter) [1], a state vector
x and its covariance matrix P can be estimated by:

Xy (+) = % () + Ko (% ()

P (+)=(I - K, H(x, (-)))P(-) )
Ky = P(OH (X O)H (% )P OHE (D)) +R)™
where o(x), H(x) and R are the residual vector, the
matrix of partial derivatives and the covariance matrix of
measurement errors, respectively. Assuming the system

model stationary and no system noise, the time update
from t, to t,,, of EKF is just expressed as:
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At first, the antenna phase center position is determined
by the following way. The state vector is defined as:
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With  single-differenced residuals of carrier-phase

measurements, the double-differenced residuals, the
partial derivatives and the covariance of measurement
errors are expressed as:
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where:
O, :single-difference between target and reference
antennas

r,  :target antenna phase center position (m)

r,  :reference antenna phase center position (m)

r' :satellite i position (m)

A :carrier wave length (m)

¢, :carrier-phase measurement (cycle)

o, - geometric range (m)

N! : carrier-phase ambiguity (m)

el :LOS (line of sight) vector

o, standard deviation of carrier-phase
measurement error (m)
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By solving the EKF formula (1), (2) with equation (4), the
phase center position of the target antenna is obtained as
the final solution of r,. In this case, the carrier-phase
ambiguities are not fixed to integers.

In the next step, the target antenna PCV is estimated. The
state vector is defined as:

x=(Ng N Ni e ™)' )
where ¢ is a coefficient vector defined as:
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With the coefficients and spherical harmonic functions,
the target antenna PCV  Ag is written as:

Ap(a,e)=c' ¥ (a,e) )
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where:
a,e :azimuth and elevation angle (rad)

Yomgsey - (n,m) spherical harmonic function
P, :(n,m)normalized Legendre function

To estimate the antenna PCV, the same formula is used as
equation (4) but », (x) and H, (x) are replaced by:
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where the phase center position r, of the target antenna
is fixed to the value determined in the first step. By
solving the EKF formulas with these equations, the target
antenna PCV is obtained as the final solution of ¢. Note
that the estimated antenna PCV is relative value to the
reference antenna. To obtain the absolute antenna PCV, a
"zero-offset" type antenna is used for the reference or
corrections are made with the reference antenna PCV
determined by the other way.

In company with the PCV determined, the carrier-phase
multipaths can be extracted. Assuming the sum of the
residuals equals to zero, the single-differenced post-fit
residuals of the measurement update step of EKF at t, is
written as:

1 2 T > —
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where b, is the average of the post-fit residuals of the
double-differenced carrier-phase measurements. The
residuals consist of the carrier-phase multipaths and
carrier tracking noises in the receiver. Assuming that the
carrier tracking noises are white, a filter reduces the
noises. Finally, by applying a simple moving-average
filter, the carrier-phase multipath for satellite i at t, can

be approximated by:

mlljr,k ~ (mlljr,k—n + mlljr,k—n+1 +.o.t )

mli.lr,k+n—l + mLiJr,k+n)/(2n +1)
where (2n+1) is the window size of the moving-average
filter. The estimated multipaths represent the single-
difference between the target and reference antenna.

ESTIMATION OF CODE MULTIPATH

By eliminating the ionospheric delay term with dual-
frequency carrier-phase measurements of the reference
antenna in the vicinity of the target antenna, the code
multipaths can be extracted as well as the carrier-phase
multipaths. The L, ionospheric delay plus bias is
estimated with the geometry-free LC (linear-combination)
of the dual-frequency carrier-phase measurements of the
reference antenna at t, by:

Lir,k = _(/1L1¢ri,k,L1 _/1L2¢ri,k,Lz)/(1_ fl_12 / fL22) (10)
where:

L' : L, ionospheric delay plus bias (m)

f,; © L; carrier frequency (Hz)

By subtracting the averaged ionospheric delay plus bias in
an arc, the L, ionospheric delay variation is obtained by:

L=(lg o )" = U Lo L) =1 (1)

By neglecting the errors of carrier-phase measurements,
the variation of code multipath plus code tracking noise of
the target antenna is estimated as the code minus carrier-
phase LC corrected with the estimated ionospheric delay
variation by:

ri,Lj,k = Pri,Lj,k _/1Lj¢|i,Lj,k —2ij2 115200 (12)

Assuming the sum of the code multipath plus the receiver
noises in the arc equal to zero, the bias is eliminated by
subtracting the average in the arc as:

M i,Lj,k = 5ri,Lj,k _gri,Lj (13)

As well as the carrier-phase multipath, by reducing the
code noises with the moving-average filter, the final code
multipath for satellite i at t, is obtained by:

i i i
M ur,Lj,k ~ (M r,Lj,k-n +M r,Lj,k—n+1 +..

+M :,Lj,k+n—l +M li',Lj,k+n)/(2n +1)

(14)



ANALYSIS TOOL: ANTTOOL

To analyze recorded raw GPS measurement data for
evaluation of antenna and receiver performance, we
developed an analysis tool called ANTTOOL, which
implements the estimation of the antenna phase center
position and PCV and the extraction of carrier-phase and
code multipaths described above. ANTTOOL is written as
Matlab m-files and inputs standard RINEX observation
data and navigation messages for both of target and
reference receivers. It can also generate some plots
representing analysis results. ANTTOOL is freely
available and is able to be used according to GPLv3
license. For details, refer [2].

EVALUATION OF RTK-GPS PERFORMANCE

In addition to the antenna and receiver performance, the
RTK-GPS performance was evaluated with low-cost
antenna and receiver. The performance includes the rate
of resolved and validated integer ambiguities and the ratio
of proper solutions, accuracy of fixed solutions and TTFF
(time-to-first-fix) with ambiguity resolution. To evaluate
them, we employed a precise positioning application and
library package RTKLIB ver. 2.1.0 developed by the
authors [3]. By using the post-mission baseline analysis of
RTKLIB, the raw GPS measurement data of the target and
reference receiver were processed by the single-frequency
kinematic mode, that was the same condition as RTK-

GPS. The carrier-phase ambiguities were resolved as an
ILS (integer least square) problem by a well-known
efficient search strategy LAMBDA and its extension
MLAMBDA. The resolved integer ambiguity was
validated by a simple ratio-test with the threshold value of
3. The solutions were compared to the reference position,
which was obtained by 24 hours static baseline-analysis
with a nearest reference station. The station coordinate
was already determined within the cm-level accuracy in
the ITRF frame. The ratio of properly resolved ambiguity
was obtained by counting the solutions with the errors
under 10 cm. To get the time to first fix, by sliding the
starting time every 10 s in 24 hours, the first fix time after
starting time was measured.

RESULTS AND CONSIDERATIONS

Table 1 lists the evaluated consumer-grade single-
frequency antennas and receivers in this study. This table
includes dual-frequency geodetic-grade antenna and
receiver for the references as well. Figure 4, 5 and 6 show
the detailed results of the performance evaluation with
major combinations of antennas and receivers in Table 1,
as antenna PCV, carrier-phase multipaths and code
multipaths, respectively. Figure 2 summarizes the
comparison of various antennas with the same receiver as
RMS of carrier-phase and code multipaths. Figure 3
shows the comparison of receivers as well. Figure 5 and 6
show the evaluation results of RTK-GPS performance

Table 1. Evaluated antennas (upper) and receivers (lower) (italic: geodetic-grade)

L Active/ LNA Size weight .
Vendor Antenna Objective  Freq. Type Seehe @ NE (mm) @ Price Note
u-blox ANN-MS General L1 Patch Active  27dB  1.5dB  40¢x48x13 105 $31
Aero .
?
Antenna AT575 General L1 Patch  Active  12dB ? 53¢x13 113 $200
Mini-Arinc .
-XS- ? ? ? ?
AntCom  4G15A2-XS-3 Airborne L1 Patch? Active ? ? 55x86x17 ? $194
Micro Vehicle .
Pulse 2335TB Tracking L1 Patch  Active 26dB <25dB  65¢x12 28 $47
Pioneer GPS-M1ZZ Ant  General L1 Patch Active ? ? 31x35x12 ? ?
Trimble Bullet 111 General L1 ? Active  35dB <3.3dB  78¢x66 170 $125
NovAtel  GPST02GG  ooolU' 11/2 Pinwheel Active 2008 20dB 185460 500  $995  Reference
. _— # of Max Size .
Vendor Receiver Objective  Freq. Channel Rate DGPS Output (mm) Price Note
General/ 4Hz/ SBAS/ NMEA/ 17x22x3 $179
u-blox  AEK-4T Timng 1 1N g4z RTCM Binary  (Module) (Module)
4Hz/ SBAS/ NMEA/ 17x22x3 $99
u-blox EVK-5H General L1 50ch 10Hz ™ RTCM  Binary™  (Module) (Module)
Superstart 11 1Hz/ SBAS/ NMEA/
NovAtel (OEM Board) Genaral L1 12ch EHz *2 RTCM Binary 71x46x13 $165
. Crescent General/ 1Hz/ SBAS/ NMEA/
Hemisphere - oenBoard)  RTK-GPS  ©t 12¢h ooz RTCM Binary  (¥40x12 $285
NovAtel OEMV-3 Geodetic/ 1) 5 p4ch 20H; ~ SBASH NMEA/ - oq 160x71 $7,095* Reference
Reference RTCM Binary

, *1 Raw Measurement, *2 Optional, *3 F/W ver. 3.00, *4 No RTK Option



with the same combinations, as the time series of
east/north/up position errors and TTFF with ambiguity
resolution. Table 2 summarizes the RTK-GPS
performance. According to these results, the difference of
the antenna performances is large between geodetic-grade
and consumer-grade, especially for the phase center
stability and code multipath. Generally, code multipath
much affects to the performance of the RTK-GPS
initialization. To improve TTFF, it might be effective to
replace a low-cost antenna with geodetic-grade one. By
contrast, the difference of receivers is not so large. The
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Figure 3. Comparison of receivers with the same antenna,
phase multipath (cm) (left) and code multipath (m) (right)

carrier-phase multipath level of consumer-grade receivers
is almost same as geodetic-grade. Therefore, the
positioning accuracy of RTK-GPS would be sufficient
even with consumer-grade receiver. Dual-frequency
receivers, however, have an advantage of much shorter
time of ambiguity resolution, ideally instantaneous. The
results of TTFF test indicate that at least a few minutes are
necessary for the first fix with a single-frequency receiver.
So, in the environment with many cycle slips like for
mobile vehicle navigation, a dual-frequency receiver is
still necessary. Though, for the application with
continuous  observation like crustal deformation
monitoring, low-cost single-frequency receiver could be
applicable for short baseline RTK-GPS.

CONCLUSIONS

In this study, The RTK-GPS performance with low-cost
single-frequency antenna and receiver were evaluated by
some field tests. According to the results of the
experiments, it is feasible to apply consumer-grade
antenna and receiver to RTK-GPS. With a low-cost
antenna, however, performance degradation is large, so
replacing it with a geodetic-grade antenna is much
effective to improve the performance. By contrast, as to
receivers, the performance difference is smaller between
the consumer-grade and the geodetic-grade.
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Table 2. Summary of RTK-GPS performances (italic: geodetic-grade)

Rover Ambiguity Resolution RMS Error of Fixed Solution TTFF with AR
Antenna Receiver Fix-Rate  Success- Rate  E-W N-S U-D Mean 95% Max

ANN-MS OEMV-3 94.8 % 99.8 % 047cm 053cm 1.09cm 968.5s 3010.0s 6310.0s
AT575 OEMV-3 98.3 % 99.7 % 0.34cm 042cm 090cm 436.7s 1370.0s 3500.0s
4G15A2-XS-3 OEMV-3 96.8 % 99.8 % 04lcm 049cm 1.12cm 5144s 1650.0s 3260.0s
2335TB OEMV-3 98.4 % 99.6 % 0.38cm 0.47cm 1.10cm 535.8s  1550.0s 2940.0 s
GPS-M1ZZ Ant OEMV-3 97.1% 99.5 % 045cm 056cm 1.15cm 983.2s 3910.0s 6600.0s
Bullet 111 OEMV-3 99.4 % 99.8 % 0.30cm 0.47cm 1.04cm 256.8s 816.0s 2200.0 s
GPS-702-GG AEK-4T 99.9 % 100.0 % 0.26cm 034cm 08lcm 131.2s 490.0 s 1200.0s

GPS-702-GG EVK-5H 0.0 % 0.0% - - - - - -
GPS-702-GG Superstar 11 99.6 % 100.0 % 0.28cm 0.39cm 0.85cm 490.1s 2000.0s 4280.0s
GPS-702-GG Crescent 99.5 % 100.0 % 0.33cm 046cm 099cm 183.1s 730.0s 1750.0 s
ANN-MS AEK-4T 98.7 % 100.0 % 0.39cm 059cm 1.08cm 652.8s 1840.0s 3490.0s

ANN-MS EVK-5H 0.0 % 0.0% - - - - - -
ANN-MS Superstar |1 98.4 % 100.0 % 044cm 0.65cm 1.23cm 1033.3s 2890.0s 4570.0s
ANN-MS Crescent 96.5 % 100.0 % 0.44cm 060cm 1.37cm 758.0s 2270.0s 5020.0 s
GPS-702-GG OEMV-3 99.8 % 100.0% 0.26cm 036cm 0.77cm 13275 630.0 s 1240.0 s
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Figure 4. 3D-skyplot of antenna PCV (antenna / receiver, italic: geodetic-grade)
(upper right - lower left: north - south directions. note that anomalies in north areas are cased by outage of satellite path)
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Figure 5. Carrier-phase multipaths (antenna / receiver, italic: geodetic-grade)
(x-axis: elevation angle in the range of 0 - 90°, y-axis: carrier-phase multipath in the range of -3 to 3 cm)
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Figure 6. Code multipaths (antenna / receiver, italic: geodetic-grade)
(x-axis: elevation angle in the range of 0 - 90°, y-axis: code multipath in the range of -3 to 3 m)
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Figure 7. Time series of RTK-GPS positioning errors (antenna / receiver, italic: geodetic-grade) (x-axis: time in the range of
0 - 24 hr, y-axes: east/north/up errors in the range of -0.2 to 0.2 m, green: fixed solutions, orange: float solutions)
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Figure 8. TTFF with ambiguity resolution of RTK-GPS (antenna / receiver, italic : geodetic-grade) (x-axis: time in the range
of 0 - 1800 s, blue bar: number of samples, red line: cumulative distribution in the range of 0 - 100 %)



