# For JAXA R&D

# PPP - Models, Algorithms and Implementations (2)



Tomoji TAKASU

2019-10-18 @Tokyo, Japan

# **PPP - Models, Algorithms and Implementation**

| 1. | 2019-10-04 | PPP models                                             |
|----|------------|--------------------------------------------------------|
|    |            | geometric range, ionosphere, troposphere, antenna PCV, |
|    |            | earth tides, wind-up, relativity, biases, coordinates  |

- 2. 2019-10-18 **PPP algorithms** SPP, LSQ, GN, EKF, noise-model, RAIM/QC, LAPACK/BLAS
- 3. 2019-11-01 **PPP data handling** LC, interpolation, slip detection, RINEX, SP3, ANTEX, RTCM, CSSR
- 4. 2019-11-22 **PPP-AR** UPD/FCB, EWL/WL/NL, ILS, LAMBDA, TCAR, PAR, validation
- 5. 2019-12-06 **INS integration**

INS sensors, Inertial navigation, INS integration

6. 2019-12-20 **POD of satellites** 

orbit element, orbit model, reduced-dynamic, ECI-ECEF transformation, precession/nutation, EOP

(1.5 h / session)

# **PPP Algorithms**

# **Notations**

| C                                          | · Spood of light (m/s)                           | T <sub>S</sub>                             | · Ion              |
|--------------------------------------------|--------------------------------------------------|--------------------------------------------|--------------------|
|                                            |                                                  | r<br>Tr                                    | . 1011             |
| $P_{r,L_i}^{s}$                            | : L <sub>i</sub> Peudorange measurement (m)      | $T_r^s$                                    | : Iro              |
| $\phi_{r,L_i}^s$                           | : L <sub>i</sub> Carrier phase measurement (cyc) | $\mathbf{f}_{\mathbf{i}}$                  | : L <sub>i</sub> c |
| $\Phi^{s}_{r,L_{i}}$                       | : L <sub>i</sub> Phase-range measurement (m)     | $\lambda_i$                                | : L <sub>i</sub> c |
| t <sub>r</sub>                             | : Signal reception time (s)                      | $B_{r,L_i}^s$                              | : L <sub>i</sub> C |
| t <sup>s</sup>                             | : Signal transmission time (s)                   | $N_{r,L}^{s}$                              | : L <sub>i</sub> C |
| $ ho_r^s$                                  | : Geometric range (m)                            | ε <sub>p</sub>                             | : Coo              |
| $\mathbf{r}^{s}(t)$                        | : Satellite position in ECEF (m)                 | ε <sub>Φ</sub>                             | : Pha              |
| $\mathbf{v}^{s}(t)$                        | : Satellite velocity in ECEF (m)                 | ω <sub>e</sub>                             | : Ear              |
| <b>r</b> <sub>r</sub>                      | : Receiver position in ECEF (m)                  | $Z_t$                                      | : Zer              |
| <b>e</b> <sub>r</sub> <sup>s</sup>         | : LOS vector in ECEF                             | $Z_{h}$                                    | : Zer              |
| $\mathbf{e}_{\mathrm{r,enu}}^{\mathrm{s}}$ | : LOS vector in local coordinates                | $Z_{w}$                                    | : Zer              |
| $\phi_r$                                   | : Latitude of receiver position (rad)            | m <sub>h</sub> (El)                        | : Hyd              |
| λ <sub>r</sub>                             | : Longitude of receiver position (rad)           | $m_{w}(El)$                                | : We               |
| h <sub>r</sub>                             | : Ellipsoidal height of receiver (m)             | U(t)                                       | : ECE              |
| H <sub>r</sub>                             | : Orthometric height of receiver (m)             | $\mathbf{E}_{\mathbf{r}}$                  | : ECE              |
| $Az_r^s$                                   | : Azimuth angle of satellite (rad)               | $\mathbf{E}^{\mathbf{s}}$                  | : ECE              |
| El <sup>s</sup>                            | : Elevation angle of satellite (rad)             | $\mathbf{R}_{\mathbf{x}}(\mathbf{\theta})$ | : Coo              |
| dt <sub>r</sub>                            | : Receiver clock bias (s)                        | $\mathbf{R}_{\mathbf{v}}(\mathbf{\theta})$ | : Coo              |
| $dT^{s}(t)$                                | : Satellite clock bias (s)                       | $\mathbf{R}_{z}(\theta)$                   | : Cod              |
|                                            |                                                  | L \ /                                      |                    |

- : Ionospheric delay (m)
- r<sup>s</sup> : Tropospheric delay (m)
- : L<sub>i</sub> carrier frequency (Hz)
- $_{i}$  : L<sub>i</sub> carrier wavelength (m)
- $E_{T,L_i}$  : L<sub>i</sub> Carrier phase bias (m)
- $I_{r,L_i}^{S}$ : L<sub>i</sub> Carrier phase ambiguity (cyc)
- $\epsilon_{p}$  : Code measurement error (m)
- $\epsilon_{\Phi}$  : Phase measurement error (m)
- $\omega_{e}$  : Earth rotation velocity (rad/s)
  - . Zenith total delay (m)
- z<sub>h</sub> : Zenith hydrostatic delay (m)
- $Z_{w}$  : Zenith wet delay (m)
- $n_{h}(El)$  : Hydrostatic mapping function
- $n_w(El)$ : Wet mapping function
- $\mathbf{U}(t)$  : ECEF to ECI transformation matrix
- $\mathbf{E}_{r}$  : ECEF to local coordinates rotation matrix
- **E**<sup>s</sup> : ECEF to satellite body rotation matrix
- $\boldsymbol{R}_x(\boldsymbol{\theta})~$  : Coordinates rotation matrix around X
- $\boldsymbol{R}_{\mathrm{y}}(\boldsymbol{\theta})\,$  : Coordinates rotation matrix around Y
- $\mathbf{R}_{z}(\theta)$  : Coordinates rotation matrix around Z

# LSE (Least Square Estimation)

### **Measurement Equations**

 $y = Hx + \varepsilon$ x : Parameters (n x 1)H : Design matrix (m x n)y : Measurements (m x 1) $\varepsilon$  : Measurement errors (m x 1)(n < m)

### **Normal Equation (NEQ)**

$$J_{LS} = \frac{1}{2} \Big( \mathbf{v}_1^2 + \mathbf{v}_2^2 + \dots + \mathbf{v}_m^2 \Big) = \frac{1}{2} \mathbf{v}^T \mathbf{v} = \frac{1}{2} (\mathbf{y} - \mathbf{H}\hat{\mathbf{x}})^T (\mathbf{y} - \mathbf{H}\hat{\mathbf{x}}) \quad \mathbf{v} \quad : \text{Residuals (m x 1)}$$
$$= \frac{1}{2} \Big( \mathbf{y}^T \mathbf{y} - \mathbf{y}^T \mathbf{H}\hat{\mathbf{x}} - \hat{\mathbf{x}}^T \mathbf{H}^T \mathbf{y} + \hat{\mathbf{x}}^T \mathbf{H}^T \mathbf{H}\hat{\mathbf{x}} \Big) = \min \qquad \text{Least squares cost function}$$
$$\frac{\partial J_{LS}}{\partial \hat{\mathbf{x}}} = \frac{1}{2} \Big( \mathbf{0}^T - \mathbf{y}^T \mathbf{H} - (\mathbf{H}^T \mathbf{y})^T + (\mathbf{H}^T \mathbf{H}\mathbf{x})^T + \hat{\mathbf{x}}^T \mathbf{H}^T \mathbf{H} \Big)$$
$$= -\mathbf{y}^T \mathbf{H} + \hat{\mathbf{x}}^T \mathbf{H}^T \mathbf{H} = \mathbf{0}^T$$

 $\mathbf{H}^{\mathrm{T}}\mathbf{H}\hat{\mathbf{x}} = \mathbf{H}^{\mathrm{T}}\mathbf{y}$  $\hat{\mathbf{x}} = (\mathbf{H}^{\mathrm{T}}\mathbf{H})^{-1}\mathbf{H}^{\mathrm{T}}\mathbf{y}$ Normal equation (NEQ)

x : Estimated parameters (n x 1)(BLUE: best linear unbiased estimate)

# **Numerical Solution of LSE**



| Solution       | MATLAB Notation                       | CPU Time |
|----------------|---------------------------------------|----------|
| NEQ + Auto     | x = (H'*H)¥(H'*y);                    | 13.3 s   |
| NEQ + LU       | [L,U] = lu(H'*H); x = U¥(L¥(H'*y));   | 12.6 s   |
| NEQ + Cholesky | R = chol(H'*H); x = R¥(R'¥(H'*y));    | 12.4 s   |
| QR             | [Q,R] = qr(H,0); x = R¥(Q'*y);        | 66.0 s   |
| SVD            | [U,D,V] = svd(H,0); x = V*(D¥(U'*y)); | 126.7 s  |
| Pseudo-Inverse | x = pinv(H)*y;                        | 151.9 s  |

size(H)=[50000,5000], Core i7-3930K (6C/12T, 3.2 GHz), MATLAB R2011b, Windows 10

# Weighted LSE

### Weighted LSE

$$\mathbf{W} = \mathbf{R}^{-1} \qquad \left( \mathbf{E} \{ \boldsymbol{\varepsilon} \} = \mathbf{0}, \mathbf{E} \{ \boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\mathrm{T}} \} = \mathbf{R} \right)$$
$$\mathbf{J}_{\mathrm{WLS}} = \frac{1}{2} \mathbf{v}^{\mathrm{T}} \mathbf{W} \mathbf{v} = \frac{1}{2} (\mathbf{y} - \mathbf{H} \hat{\mathbf{x}})^{\mathrm{T}} \mathbf{W} (\mathbf{y} - \mathbf{H} \hat{\mathbf{x}}) = \min$$
$$\mathbf{H}^{\mathrm{T}} \mathbf{W} \mathbf{H} \hat{\mathbf{x}} = \mathbf{H}^{\mathrm{T}} \mathbf{W} \mathbf{y}$$
$$\hat{\mathbf{x}} = (\mathbf{H}^{\mathrm{T}} \mathbf{W} \mathbf{H})^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{W} \mathbf{y}$$

R : Covariance matrix of measurements (m x m)

**W** : Weighting matrix (m x m)

NEQ for weighted LSE

### w/o correlation between Measurements

$$\mathbf{W} = \mathbf{R}^{-1} = \operatorname{diag}(\sigma_{1}^{-2}, \sigma_{2}^{-2}, ..., \sigma_{m}^{-2}) \quad \left( \mathbf{E} \{ \boldsymbol{\epsilon}_{i} \boldsymbol{\epsilon}_{j} \} = \begin{cases} \sigma_{i}^{2} & (i = j) \\ 0 & (i \neq j) \end{cases} \right)$$
$$\mathbf{H}^{*T} \mathbf{H}^{*} \hat{\mathbf{x}} = \mathbf{H}^{*T} \mathbf{y}^{*}$$
$$\hat{\mathbf{x}} = (\mathbf{H}^{*T} \mathbf{H}^{*})^{-1} \mathbf{H}^{*T} \mathbf{y}^{*}$$
$$\mathbf{y}^{*} = \mathbf{W}^{1/2} \mathbf{y} = \left( \frac{y_{1}}{\sigma_{1}}, \frac{y_{2}}{\sigma_{2}}, ..., \frac{y_{m}}{\sigma_{m}} \right)^{T} \quad \mathbf{H}^{*} = \mathbf{W}^{1/2} \mathbf{H} = \left( \begin{array}{ccc} \mathbf{H}_{11} / \sigma_{1} & \mathbf{H}_{12} / \sigma_{1} & \cdots & \mathbf{H}_{1n} / \sigma_{1} \\ \mathbf{H}_{21} / \sigma_{2} & \mathbf{H}_{22} / \sigma_{2} & \cdots & \mathbf{H}_{2n} / \sigma_{2} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{H}_{m1} / \sigma_{m} & \mathbf{H}_{2n} / \sigma_{m} & \cdots & \mathbf{H}_{mn} / \sigma_{m} \end{array} \right)$$

# **Estimated Parameter Errors**

### **Estimated Parameter Errors**

$$\delta \mathbf{x} = \mathbf{x} - \hat{\mathbf{x}}$$
  
=  $\mathbf{x} - (\mathbf{H}^{\mathrm{T}} \mathbf{W} \mathbf{H})^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{W} \mathbf{y}$   
=  $\mathbf{x} - (\mathbf{H}^{\mathrm{T}} \mathbf{W} \mathbf{H})^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{W} (\mathbf{H} \mathbf{x} + \boldsymbol{\varepsilon})$   
=  $-(\mathbf{H}^{\mathrm{T}} \mathbf{W} \mathbf{H})^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{W} \boldsymbol{\varepsilon}$ 

### **Covariance of Estimated Parameter Errors**

$$\begin{split} \mathbf{P} &= E\left\{\delta \mathbf{x}\delta \mathbf{x}^{T}\right\} \\ &= (\mathbf{H}^{T}\mathbf{W}\mathbf{H})^{-1}\mathbf{H}^{T}\mathbf{W}E\left\{\epsilon\epsilon^{T}\right\}\mathbf{W}\mathbf{H}(\mathbf{H}^{T}\mathbf{W}\mathbf{H})^{-1} \\ &= (\mathbf{H}^{T}\mathbf{W}\mathbf{H})^{-1}\mathbf{H}^{T}\mathbf{W}\mathbf{W}^{-1}\mathbf{W}\mathbf{H}(\mathbf{H}^{T}\mathbf{W}\mathbf{H})^{-1} \\ &= (\mathbf{H}^{T}\mathbf{W}\mathbf{H})^{-1} \\ &= (\mathbf{H}^{*T}\mathbf{H}^{*})^{-1} \qquad E\{\epsilon\epsilon^{T}\} = \mathbf{R} = \mathbf{W}^{-1} \\ \sigma_{x_{i}}^{2} &= P_{ii} \qquad : \text{Variance of } i^{\text{th}} \text{ estimated} \\ \text{ parameter error} \end{split}$$

Standard Normal Distribution



Cumulative Distribution Function (CDF)

$$\Phi(\mathbf{x}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\mathbf{x}} \exp\left(-\frac{t^2}{2}\right) dt = \frac{1}{2} \left(1 - \operatorname{erf}\left(\frac{1}{\sqrt{2}}\right)\right)$$

$$P(-1 \le x \le 1) = \Phi(1) - \Phi(-1) = 0.682689$$
  

$$P(-2 \le x \le 2) = \Phi(2) - \Phi(-2) = 0.954500$$
  

$$P(-3 \le x \le 3) = \Phi(2) - \Phi(-2) = 0.997300$$
  

$$P(-4 \le x \le 4) = \Phi(3) - \Phi(-3) = 0.999937$$
  

$$erf(x) = \frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-t^{2}} dt$$
 : Error function

# **Nonlinear LSE**

### **Nonlinear Measurement Equations**

 $\mathbf{y} = \mathbf{h}(\mathbf{x}) + \boldsymbol{\varepsilon}$ 

### **Normal Equation (NEQ)**

$$h(x) = h(x_0) + H(x - x_0) + \dots$$

$$\mathbf{y} \approx \mathbf{h}(\mathbf{x}_0) + \mathbf{H}(\mathbf{x} - \mathbf{x}_0) + \mathbf{\varepsilon}$$
$$\mathbf{y} - \mathbf{h}(\mathbf{x}_0) = \mathbf{H}(\mathbf{x} - \mathbf{x}_0) + \mathbf{\varepsilon}$$
$$\mathbf{H}^{\mathrm{T}}\mathbf{W}\mathbf{H}(\hat{\mathbf{x}} - \mathbf{x}_0) = \mathbf{H}^{\mathrm{T}}\mathbf{W}(\mathbf{y} - \mathbf{h}(\mathbf{x}_0))$$
$$\hat{\mathbf{x}} = \mathbf{x}_0 + (\mathbf{H}^{\mathrm{T}}\mathbf{W}\mathbf{H})^{-1}\mathbf{H}^{\mathrm{T}}\mathbf{W}(\mathbf{y} - \mathbf{h}(\mathbf{x}_0))$$

h(x) : Measurement model functions (m x 1) (n < m)

 $\mathbf{x}_0$  : Initial parameters (n x 1)

$$\mathbf{H} = \frac{\partial \mathbf{h}(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x}=\mathbf{x}_0} = \begin{pmatrix} \frac{\partial \mathbf{h}_1}{\partial \mathbf{x}_1} & \frac{\partial \mathbf{h}_1}{\partial \mathbf{x}_2} & \cdots & \frac{\partial \mathbf{h}_1}{\partial \mathbf{x}_n} \\ \frac{\partial \mathbf{h}_2}{\partial \mathbf{x}_1} & \frac{\partial \mathbf{h}_2}{\partial \mathbf{x}_2} & \cdots & \frac{\partial \mathbf{h}_2}{\partial \mathbf{x}_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \mathbf{h}_m}{\partial \mathbf{x}_1} & \frac{\partial \mathbf{h}_m}{\partial \mathbf{x}_2} & \cdots & \frac{\partial \mathbf{h}_m}{\partial \mathbf{x}_n} \end{pmatrix}$$

: Partial derivatives (Jacobian matrix) (m x n)

**GN (Gauss-Newton) Method** 

$$\hat{\mathbf{x}}_0 = \mathbf{x}_0$$
  

$$\hat{\mathbf{x}}_{i+1} = \hat{\mathbf{x}}_i + (\mathbf{H}^{\mathrm{T}}\mathbf{W}\mathbf{H})^{-1}\mathbf{H}^{\mathrm{T}}\mathbf{W}(\mathbf{y} - \mathbf{h}(\hat{\mathbf{x}}_i))$$
  

$$\hat{\mathbf{x}} = \lim_{i \to \infty} \hat{\mathbf{x}}_i$$

Note: GN does not always converge. In ill conditions, it often diverges. Consider other non-linear LSE methods like LM (Levenberg-Marquardt).

# **SPP (Single Point Positioning)**

**Parameters and Measurements** 

 $\mathbf{x} = (\mathbf{r}_{r}^{T}, cdt_{r})^{T}, \mathbf{y} = (P_{r}^{s1}, P_{r}^{s2}, P_{r}^{s3}, ..., P_{r}^{sm})^{T}$ 

# satellites satellites receiver

### **Measurement Equations and Partial Derivatives**

$$\mathbf{y} = \mathbf{h}(\mathbf{x}) + \varepsilon$$

$$\mathbf{h}(\mathbf{x}) = \begin{pmatrix} \rho_r^{s1} + c(dt_r - dT^{s1}(t^{s1})) + I_r^{s1} + T_r^{s1} + d_r^{s1} \\ \rho_r^{s2} + c(dt_r - dT^{s2}(t^{s2})) + I_r^{s2} + T_r^{s2} + d_r^{s2} \\ \rho_r^{s3} + c(dt_r - dT^{s3}(t^{s3})) + I_r^{s3} + T_r^{s3} + d_r^{s3} \\ \vdots \\ \rho_r^{sm} + c(dt_r - dT^{sm}(t^{sm})) + I_r^{sm} + T_r^{sm} + d_r^{sm} \end{pmatrix} \mathbf{H} = \frac{\partial \mathbf{h}(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mathbf{x}} = \begin{pmatrix} -\mathbf{e}_r^{s1T} & 1 \\ -\mathbf{e}_r^{s2T} & 1 \\ -\mathbf{e}_r^{s3T} & 1 \\ \vdots \\ -\mathbf{e}_r^{smT} & 1 \end{pmatrix}$$

### Nonlinear LSE by GN

$$\hat{\mathbf{x}}_{0} = \mathbf{x}_{0}$$

$$\hat{\mathbf{x}}_{i+1} = \hat{\mathbf{x}}_{i} + (\mathbf{H}^{\mathrm{T}}\mathbf{W}\mathbf{H})^{-1}\mathbf{H}^{\mathrm{T}}\mathbf{W}(\mathbf{y} - \mathbf{h}(\hat{\mathbf{x}}_{i})) \qquad \mathbf{P} = (\mathbf{H}^{\mathrm{T}}\mathbf{W}\mathbf{H})^{-1} = \begin{bmatrix} \sigma_{x}^{2} & \sigma_{xy} & \sigma_{xz} & \sigma_{xt} \\ \sigma_{xy} & \sigma_{y}^{2} & \sigma_{yz} & \sigma_{yt} \\ \sigma_{xz} & \sigma_{yz} & \sigma_{z}^{2} & \sigma_{zt} \\ \sigma_{xt} & \sigma_{yt} & \sigma_{zt} & \sigma_{t}^{2} \end{bmatrix}$$

# **Partial Derivatives of Range**

### **Peudorange and Phase-range Measurement Models**

$$P_{r}^{s} = \rho_{r}^{s} + c(dt_{r} - dT^{s}(t^{s})) + I_{r}^{s} + T_{r}^{s} + d_{r}^{s} + \varepsilon_{p}$$

$$\Phi_{r}^{s} = \rho_{r}^{s} + c(dt_{r} - dT^{s}(t^{s})) - I_{r}^{s} + T_{r}^{s} + d_{r}^{s} + \lambda d_{pw} + B_{r}^{s} + \varepsilon_{\Phi}$$

### Partial Derivatives of Range by Receiver Position

$$\begin{aligned} \frac{\partial \rho_{r}^{s}}{\partial x_{r}} &\approx \frac{\partial \sqrt{(x^{s} - x_{r})^{2} + (y^{s} - y_{r})^{2} + (y^{s} - y_{r})^{2}}}{\partial x_{r}} = \frac{1}{2} \left\{ (x^{s} - x_{r})^{2} + (y^{s} - y_{r})^{2} + (y^{s} - y_{r})^{2} \right\}^{-1/2} \frac{\partial (x^{s} - x_{r})^{2}}{\partial x_{r}} \\ &= \frac{-2(x^{s} - x_{r})}{2\sqrt{(x^{s} - x_{r})^{2} + (y^{s} - y_{r})^{2} + (y^{s} - y_{r})^{2}}} = \frac{-(x^{s} - x_{r})}{\rho_{r}^{s}} \\ \frac{\partial \rho_{r}^{s}}{\partial y_{r}} &\approx \frac{-(y^{s} - y_{r})}{\rho_{r}^{s}}, \quad \frac{\partial \rho_{r}^{s}}{\partial z_{r}} \approx \frac{-(z^{s} - z_{r})}{\rho_{r}^{s}} \\ \frac{\partial \rho_{r}^{s}}{\partial r_{r}} &= \left(\frac{\partial \rho_{r}^{s}}{\partial x_{r}}, \frac{\partial \rho_{r}^{s}}{\partial y_{r}}, \frac{\partial \rho_{r}^{s}}{\partial z_{r}}\right) \approx -\left(\frac{x^{s} - x_{r}}{\rho_{r}^{s}}, \frac{y^{s} - y_{r}}{\rho_{r}^{s}}, \frac{z^{s} - z_{r}}{\rho_{r}^{s}}\right) = -\frac{(\mathbf{r}^{s}(t^{s}) - \mathbf{r}_{r})^{T}}{\rho_{r}^{s}} = -\mathbf{e}_{r}^{sT} \\ \frac{\partial P_{r}^{s}}{\partial \mathbf{r}_{r}} \approx -\mathbf{e}_{r}^{sT}, \quad \frac{\partial \Phi_{r}^{s}}{\partial \mathbf{r}_{r}} \approx -\mathbf{e}_{r}^{sT} \qquad \mathbf{r}_{r} = (x_{r}, y_{r}, z_{r})^{T}, \quad \mathbf{r}^{s}(t^{s}) = (x^{s}, y^{s}, z^{s})^{T} \end{aligned}$$

# **Noise Model**



# SPP by GN

# Initial parameters for GN

$$\mathbf{x}_{0}(\mathbf{t}_{k}) = \begin{cases} \mathbf{0} & (k=1) \\ \hat{\mathbf{x}}(\mathbf{t}_{k-1}) & (k>1) \end{cases}$$

**Condition of convergence** 

 $\left\| \hat{\mathbf{x}}_{i} - \hat{\mathbf{x}}_{i-1} \right\| < \delta_{thres}$ 

 $\delta_{thres} & : Threshold to exit iteration loop$ (RTKLIB: 10<sup>-4</sup> m): Max number of iterations(RTKLIB: 10)

# **Condition of divergence**

 $i > i_{MAX}$ 

#### Example of Convergence of Solutions $(X_0 = 0)$

| i | x (m)            | y (m)                   | z (m)                   | cdt <sub>r</sub> (m) |
|---|------------------|-------------------------|-------------------------|----------------------|
| 0 | 0.000000         | 0.000000                | 0.000000                | 0.000000             |
| 1 | -4739338.8790644 | <b>3</b> 968053.3426383 | 4470195.0681293         | 1290751.6350707      |
| 2 | -3990084.5939062 | <b>33</b> 34559.7805777 | 3763444.6383541         | 50195.3310677        |
| 3 | -3957255.7455862 | 3310242.1098583         | <b>3737755.</b> 6233736 | 510.7878812          |
| 4 | -3957205.2229884 | 3310203.7001970         | 3737718.0508664         | 432.5789153          |
| 5 | -3957205.1820501 | 3310203.6651692         | 3737718.0078941         | 432.4910365          |
| 6 | -3957205.1820116 | 3310203.6651363         | 3737718.007853 <b>7</b> | 432.490953 <b>9</b>  |
| 7 | -3957205.1820116 | 3310203.6651363         | 3737718.0078536         | 432.4909538          |
| 8 | -3957205.1820116 | 3310203.6651363         | 3737718.0078536         | 432.4909538          |
| 9 | -3957205.1820116 | 3310203.6651363         | 3737718.0078536         | 432.4909538          |
|   |                  |                         |                         |                      |

2001/1/1 0:00:00, TKSB, processed by RTKLIB 2.2.1 (n = 8)

# **Examples of SPP Solutions**



# **Validation and RAIM**

### **Chi-Square and DOP Test**

$$S(\hat{\mathbf{x}}) = (\mathbf{y} - \mathbf{h}(\hat{\mathbf{x}}))^{\mathrm{T}} \mathbf{W}(\mathbf{y} - \mathbf{h}(\hat{\mathbf{x}})) = \sum_{i=1}^{m} \frac{(\mathbf{y}_{i} - \mathbf{h}_{i}(\hat{\mathbf{x}}))^{2}}{\sigma_{i}^{2}} \sim \chi_{m-n}^{2} \quad (m > n)$$
  
GDOP =  $\sqrt{\mathrm{trace}\left\{(\mathbf{H}^{\mathrm{T}}\mathbf{H})^{-1}\right\}}$   $\chi_{n}^{2}$  : Ch

 $\label{eq:gdot_max} \begin{array}{ll} \mbox{if} & S(\hat{x}) > \chi^2_{m-n,\alpha} \mbox{ or } \mathrm{GDOP} > \mathrm{GDOP}_{max} \mbox{ then} \\ & \mbox{reject solution } \hat{x} \\ & \mbox{end} \end{array}$ 

### **RAIM FDE**

```
\begin{array}{ll} \mbox{if} & S(\hat{x}) > \chi^2_{m-n,\alpha} \mbox{ then } (m>n+1) \\ \mbox{for $i$ in $1$ ... $m} \\ & \mbox{exclude $y_i$} \\ & \mbox{solve LSE} \rightarrow \hat{x}_{e,i} \\ & \mbox{end} \\ & \mbox{select $i$ with $\min(S(\hat{x}_{e,i})))$} \\ & \mbox{if $S(\hat{x}_{e,i}) > \chi^2_{m-n-l,\alpha}$ then } \\ & \mbox{exit $as error$} \\ & \mbox{else} \\ & \hat{x} = \hat{x}_{e,i} \\ & \mbox{end} \\ & \mbox{end} \\ & \mbox{end} \\ \end{array}
```

- <sup>2</sup> : Chi-square distribution of with
- $\lambda_p$  p degree freedom
- $\alpha_{-}$  : Significance level of chi-square test

 $\text{GDOP}_{\max}: \mathsf{Max} \ \mathsf{GDOP}$ 

RAIM: Receiver autonomous integrity monitoring FDE : Fault detection and exclusion)

# Kalman Filter (KF)

### Linear system/measurement models

 $\begin{array}{ll} \text{System Model:} & \mathbf{x}_k = \mathbf{\Phi}_k \mathbf{x}_{k-1} + \mathbf{q}_k & (\mathbf{q}_k \sim N(\mathbf{0}, \mathbf{Q}_k)) \\ \text{Measurement Model:} & \mathbf{y}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{\epsilon}_k & (\mathbf{\epsilon}_k \sim N(\mathbf{0}, \mathbf{R}_k)) \\ \end{array}$ 



#### Reference

B. P. Gibbs, Advanced Kalman filtering, least-squares and modeling, A John Willey & Sons, 2011



# **Extended KF (EKF)**



### Iterated EKF (IEKF)

Repeat (1) until it converges. Refer 9.1.2 of Gibbs (2011) for details.

# **Outlier Detection and Exclusion**

### **Objectives**

Detect erroneous data Reject and exclude outliers Avoid filter divergence

# **Pre-fit Residuals Test**

$$\begin{split} \mathbf{P}_{\mathbf{y}} &= \mathbf{H}_{k} \mathbf{P}_{k}^{\mathsf{-}} \mathbf{H}_{k}^{\mathsf{T}} + \mathbf{R}_{k} \\ \text{for i in 1 ... m} \\ & \nu_{i} &= y_{i} - h_{i} (\hat{\mathbf{x}}_{k}^{-}) \\ & \text{if } \nu_{i}^{-2} > n_{\text{pre-fit}}^{2} P_{y,ii} \text{ then} \\ & \text{ reject } y_{i} \text{ and flag i as potential cycle-slip (phase)} \\ & \text{end} \\ \text{end} \end{split}$$

## **Post-fit Residuals Test**





# PPP by EKF (1)

### **States and Measurements**

$$\begin{split} \mathbf{x} &= (\mathbf{r}_{r}^{T}, cdt_{r}, Z_{t}, B_{r,LC}^{s1}, B_{r,LC}^{s2}, ..., B_{r,LC}^{sm})^{T} \\ \mathbf{y}_{k} &= (\mathbf{y}_{P}^{T}, \mathbf{y}_{\Phi}^{T})^{T} \quad (t = t_{k}) \\ \mathbf{y}_{p} &= (P_{r,LC}^{s1}, P_{r,LC}^{s2}, ..., P_{r,LC}^{sm})^{T} \quad (P_{r,LC}^{si} = C_{1}P_{r,L1}^{si} + C_{2}P_{r,L2}^{si}) \\ \mathbf{y}_{\Phi} &= (\Phi_{r,LC}^{s1}, \Phi_{r,LC}^{s2}, ..., \Phi_{r,LC}^{sm})^{T} \quad (\Phi_{r,LC}^{si} = C_{1}\lambda_{1}\phi_{r,L1}^{si} + C_{2}\lambda_{2}\phi_{r,L2}^{si}) \end{split}$$
(Iono-free code and phase)

### **Measurement Equations and Partial Derivatives**

$$\mathbf{h}_{k}(\mathbf{x}) = (\mathbf{h}_{p}(\mathbf{x})^{\mathrm{T}}, \mathbf{h}_{\Phi}(\mathbf{x})^{\mathrm{T}})^{\mathrm{T}} \quad \mathbf{H}_{k} = (\mathbf{H}_{p}^{\mathrm{T}}, \mathbf{H}_{\Phi}^{\mathrm{T}})^{\mathrm{T}} \quad (\mathbf{t} = \mathbf{t}_{k})$$

$$\mathbf{h}_{p}(\mathbf{x}) = \begin{pmatrix} \rho_{r}^{sl} + c(dt_{r} - dT^{sl}(t^{sl})) + T_{r}^{sl} + d_{r}^{sl} \\ \rho_{r}^{s2} + c(dt_{r} - dT^{s2}(t^{s2})) + T_{r}^{s2} + d_{r}^{s2} \\ \vdots \\ \rho_{r}^{sm} + c(dt_{r} - dT^{sm}(t^{sm})) + T_{r}^{sm} + d_{r}^{sm} \end{pmatrix} \mathbf{h}_{\Phi}(\mathbf{x}) = \begin{pmatrix} \rho_{r}^{sl} + c(dt_{r} - dT^{sl}(t^{sl})) + T_{r}^{sl} + d_{r}^{sl} + \lambda_{NL} d_{pw}^{sl} + B_{r}^{sl} \\ \rho_{r}^{s2} + c(dt_{r} - dT^{sm}(t^{sm})) + T_{r}^{sm} + d_{r}^{sm} \end{pmatrix} \mathbf{h}_{\Phi}(\mathbf{x}) = \begin{pmatrix} \rho_{r}^{sl} + c(dt_{r} - dT^{sl}(t^{sl})) + T_{r}^{sl} + d_{r}^{sl} + \lambda_{NL} d_{pw}^{sl} + B_{r}^{sl} \\ \vdots \\ \rho_{r}^{sm} + c(dt_{r} - dT^{sm}(t^{sm})) + T_{r}^{sm} + d_{r}^{sm} \end{pmatrix} \mathbf{h}_{\Phi}(\mathbf{x}) = \begin{pmatrix} \rho_{r}^{sl} + c(dt_{r} - dT^{sl}(t^{sl})) + T_{r}^{sl} + d_{r}^{sl} + \lambda_{NL} d_{pw}^{sm} + B_{r}^{sl} \\ \rho_{r}^{sl} + c(dt_{r} - dT^{sm}(t^{sm})) + T_{r}^{sm} + d_{r}^{sm} + \lambda_{NL} d_{pw}^{sm} + B_{r}^{sm} \end{pmatrix}$$

$$\mathbf{H}_{P} = \begin{pmatrix} -\mathbf{e}_{r}^{slT} & 1 & m_{w}(El_{r}^{sl}) & \mathbf{0}_{l\times m} \\ -\mathbf{e}_{r}^{s2T} & 1 & m_{w}(El_{r}^{sl}) & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -\mathbf{e}_{r}^{smT} & 1 & m_{w}(El_{r}^{sm}) & \mathbf{0}_{0} & \cdots & 1 \end{pmatrix}$$

# PPP by EKF (2)

### **Initial States and Covariances**

$$\hat{\mathbf{x}}_{1}^{-} = (\hat{\mathbf{r}}_{r}^{T}, \hat{cdt}_{r}, Z(\hat{\mathbf{r}}_{r}), B_{0}^{s1}, B_{0}^{s2}, ..., B_{0}^{sm})^{T}$$
$$\mathbf{P}_{1}^{-} = \text{diag}(\sigma_{x}^{2}, \sigma_{y}^{2}, \sigma_{z}^{2}, \sigma_{t}^{2}, \sigma_{Z}^{2}, \sigma_{B}^{2}, \sigma_{B}^{2}, ..., \sigma_{B}^{2})^{T}$$

Time Update of EKF

 $\hat{\mathbf{x}}_{k}^{-} = \mathbf{\Phi}_{k} \hat{\mathbf{x}}_{k-1}^{+}, \mathbf{P}_{k}^{-} = \mathbf{\Phi}_{k} \mathbf{P}_{k-1}^{+} \mathbf{\Phi}_{k}^{\mathrm{T}} + \mathbf{Q}_{k}$ 

 $\hat{\mathbf{r}}_{r}, \hat{\text{cdt}}_{r}, \sigma_{x}^{2}, \sigma_{y}^{2}, \sigma_{z}^{2}, \sigma_{t}^{2} : \text{SPP solutions}$   $Z(\hat{\mathbf{r}}_{r}) : \text{ZTD by empirical tropos. model (m)}$   $B_{0}^{si} = \Phi_{r,LC}^{si} - P_{r,LC}^{si} : \text{Guess phase bias (m)}$   $\sigma_{Z}^{2}, \sigma_{B}^{2} : \text{Variance of } Z(\hat{\mathbf{r}}_{r}), B_{o}^{si}$ 

$$\boldsymbol{\Phi}_{k} = \begin{pmatrix} \mathbf{I}_{3\times3} & & & \\ & 1 & & \\ & & 1 & & \\ & & & \mathbf{I}_{m\times m} \end{pmatrix} \qquad \boldsymbol{Q}_{k} = \begin{pmatrix} \sigma_{q_{t}}^{2} \mathbf{I}_{3\times3} & & & & \\ & \sigma_{q_{t}}^{2} & & & \\ & & \sigma_{q_{Z}}^{2} & & \\ & & & \sigma_{q_{B}}^{2} \mathbf{I}_{m\times m} \end{pmatrix} (t_{k} - t_{k-1})$$

 $\sigma_{q_r}^2, \sigma_{q_t}^2, \sigma_{q_Z}^2 \sigma_{q_B}^2$  : System noise variance of receiver position, receiver clock, ZTD and phase bias (m<sup>2</sup>/s)

### **Typical System Noises**

$$\sigma_{q_{r}}^{2} = \begin{cases} 0 \text{ (Static PPP)} \\ \infty \text{ (Kinematic PPP)} \end{cases} \quad \sigma_{q_{t}}^{2} = \infty \quad \sigma_{q_{Z}}^{2} = \left(10^{-4}\right)^{2} \quad \sigma_{q_{B}}^{2} = \begin{cases} \left(10^{-4}\right)^{2} \text{ (cycle slip)} \\ \infty \text{ (no cycle slip)} \end{cases}$$

(stochastic models: receiver clock = white-noise, ZTD = random-walk)

# LAPACK/BLAS

## LAPACK (Linear Algebra Package)

Linear equations

Linear least squares (LLS) problems

Eigenproblems

Singular value decomposition (SVD)

•••

xyyyzzz() x = (S: SP, D: DP C: SP-CPX, Z: DP-CPX)
yy = matrix type, zzz = function

# **BLAS (Basic Linear Algebra Subprograms)**

Level 1 
$$\mathbf{y} \leftarrow \alpha \mathbf{x} + \mathbf{y}$$
  
Level 2  $\mathbf{y} \leftarrow \alpha \mathbf{A}^{\gamma} \mathbf{x} + \beta \mathbf{y}$ 

- Level 3  $\mathbf{C} \leftarrow \alpha \mathbf{A}^{\gamma} \mathbf{B}^{\delta} + \beta \mathbf{C}$
- xzzzz() x = (S: SP, D: DP C: SP-CPX, Z: DP-CPX)
  zzzz = function

# Many Compatible Libraries to LAPACK/BLAS

ATLAS, GotoBLAS, OpenBLAS, Intel MKL, cuBLAS, ...

(http://netlib.org/lapack, http://netlib.org/blas)





column-major order in memory (a<sub>ij</sub> = A[i+n\*j]=A[j][i])

# **Performance of Matrix Handling**

| Function                | Size<br>(n =) | CPU Time                   |                            |                             |                            |                             |
|-------------------------|---------------|----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|
| Function                |               | RTKLIB                     | LAPACK/BLAS                | ATLAS                       | OpenBLAS *                 | Intel MKL *                 |
|                         | 100           | 0.002 s<br>(1.00 Gflops)   | 0.002 s<br>(1.00 Gflops)   | 0.001 s<br>(1.99 Gflops)    | 0.019 s<br>(0.10 Gflops)   | 0.013 s<br>(0.15 Gflops)    |
| matmul()                | 300           | 0.056 s<br>(0.96 Gflops)   | 0.057 s<br>(0.95 Gflops)   | 0.012 s<br>(4.49 Gflops)    | 0.003 s<br>(17.97 Gflops)  | 0.001 s<br>(53.91 Gflops)   |
| C = A * B<br>(A,B,C:    | 1000          | 1.527 s<br>(1.31 Gflops)   | 0.660 s<br>(3.03 Gflops)   | 0.200 s<br>(10.00 Gflops)   | 0.033 s<br>(60.58 Gflops)  | 0.032 s<br>(62.47 Gflops)   |
| n x n)                  | 3000          | 287.319 s<br>(0.19 Gflops) | 22.178 s<br>(2.43 Gflops)  | 4.031 s<br>(13.40 Gflops)   | 0.262 s<br>(206.07 Gflops) | 0.513 s<br>(105.25 Gflops)  |
|                         | 10000         | > 1800 s                   | 815.128 s<br>(2.45 Gflops) | 148.005 s<br>(13.51 Gflops) | 5.674 s<br>(352.47 Gflops) | 10.716 s<br>(186.63 Gflops) |
|                         | 100           | 0.005 s                    | 0.004 s                    | 0.000 s                     | 0.001 s                    | 0.001 s                     |
| solve()                 | 300           | 0.084 s                    | 0.056 s                    | 0.007 s                     | 0.002 s                    | 0.016 s                     |
| A * x = y<br>(A: n x n, | 1000          | 2.389 s                    | 0.939 s                    | 0.224 s                     | 0.025 s                    | 0.054 s                     |
| x,y: n x 1)             | 3000          | 493.587 s                  | 28.674 s                   | 5.649 s                     | 0.389 s                    | 0.697 s                     |
|                         | 10000         | > 1800 s                   | 1010.426 s                 | 202.090 s                   | 9.342 s                    | 12.122 s                    |

CPU: Core i7-5960X (8C/16T, 3.0-3.5 GHz, HT=ON, peak 448 Gflops), RAM: 32 GB,

Ubuntu 16.04 LTS (64 bit), gcc 5.4.0, RTKLIB 2.4.2, MKL 11.1.2.244, \* multi-threaded using all cores

# matmul() and solve()

- **DGEMM** :  $C \leftarrow \alpha op(A)op(B) + \beta C$ ,  $op(X) = X, X^{T}, X^{H}, C m \times n$
- **DGETRF** : Compute an LU factorization if a general matrix, using partial pivoting with row interchange
- **DGETRS** : Solve a general system of linear equations AX = B, A<sup>T</sup>X = B or A<sup>H</sup>X = B, using the LU factorization computed by DGETRF



# **Extension of PPP Algorithms**

### **Support Multi-Constellation GNSS**

More satellites improve performance: GPS, GLONASS, Galileo, QZSS, BDS, ... Consider time and coordinate system difference Manage receiver biases (ISB and IFB) between systems

### No Explicit LC to Eliminate Ionosphere Effects

With less measurement noise

Reduce solution re-convergence time after loss-of-lock of signals

Support local STEC correction generation

### **Involve Adaptive Filter Algorithm**

Enable auto tuning of stochastic parameters Improve performance in dynamic environments

### **Reduce CPU Time**

Employ sparse matrix handling

Dynamic assignment of phase bias parameters to reduce matrix size

### **PPP-AR and INS Integration**

Refer advanced topics

# Notes for PPP Models

# Sagnac Effect in Geometric Range



26

# **Relativistic Correction for Satellite Clock**

#### J. Kouba, A guide to using International GNSS Service (IGS) products, 2009

The GPS System already has some well developed modeling conventions, e.g., that only the periodic relativity correction

 $\Delta t_{rel} = -2\vec{X}s \cdot \vec{V}s / c^2$ (5.3.4)is to be applied by all GPS users (ION, 1980; ICD-GPS-200, 1991). Here  $\overline{Xs}$ ,  $\overline{Vs}$  are the satellite position

and velocity vectors and c is the speed of light. The same convention has also been adopted by IGS, i.e., all the IGS satellite clock solutions are consistent with and require this correction. Approximation errors of

#### **IERS Conventions 2010**

In this framework, the proper time of a clock A located at the GCRS coordinate position  $\mathbf{x}_A(t)$ , and moving with the coordinate velocity  $\mathbf{v}_A = d\mathbf{x}_A/dt$ , where t is TCG,

An alternative expression for the

(10.11)

relativistic periodic correction is

GCRS: Geocentric Celestial Reference System, TCG : Geocentric Coordinate Time

(27)

(10.2)

(20.3.3.3.3.1)

$$\Delta \tau_A^{per} = -\frac{2}{c^2} \mathbf{v}_A \cdot \mathbf{x}_A,$$

which is exactly equivalent to the preceding Keplerian orbit formulation, provided that the osculating Keplerian orbit elements are used. This formulation is used e.g. by the IGS (International GNSS Service) for its official GPS and GLONASS clock solution products.

#### IS-GPS-200E, GPS Space segment/navigation user interface specifications

$$\Delta t_{\rm r} = -\frac{2 \vec{R} \cdot \vec{V}}{c^2}$$

where

R is the instantaneous position vector of the SV, V is the instantaneous velocity vector of the SV, and

It is immaterial whether the vectors R and V are expressed in earth-fixed, rotating coordinates or in earth-centered.

inertial coordinates.