For JAXA R&D

PPP - Models, Algorithms and Implementations (4)

Tomoji TAKASU

2019-11-22 @Tokyo, Japan

PPP - Models, Algorithms and Implementation

1.	2019-10-04	PPP models	
		geometric range, ionosphere, troposphere, antenna PCV, earth tides, wind-up, relativity, biases, coordinates	
2.	2019-10-18	PPP algorithms SPP, LSQ, GN, EKF, noise-model, RAIM/QC, LAPACK/BLAS	
3.	2019-11-01	PPP data handling	
		LC, interpolation, slip detection, RINEX, SP3, ANTEX, RTCM,	
		CSSR	
4.	2019-11-22	PPP-AR	
4.	2019-11-22	PPP-AR UPD/FCB, EWL/WL/NL, ILS, LAMBDA, TCAR, PAR, validation	
4 .	2019-11-22 2019-12-06	PPP-AR UPD/FCB, EWL/WL/NL, ILS, LAMBDA, TCAR, PAR, validation INS integration	
4 .	2019-11-22 2019-12-06	PPP-AR UPD/FCB, EWL/WL/NL, ILS, LAMBDA, TCAR, PAR, validation INS integration INS sensors, Inertial navigation, INS integration	
4 . 5. 6.	2019-11-22 2019-12-06 2019-12-20	PPP-AR UPD/FCB, EWL/WL/NL, ILS, LAMBDA, TCAR, PAR, validation INS integration INS sensors, Inertial navigation, INS integration POD of satellites	
4 . 5. 6.	2019-11-22 2019-12-06 2019-12-20	PPP-AR UPD/FCB, EWL/WL/NL, ILS, LAMBDA, TCAR, PAR, validation INS integration INS sensors, Inertial navigation, INS integration POD of satellites orbit element, orbit model, reduced-dynamic,	
4 . 5.	2019-11-22 2019-12-06 2019-12-20	PPP-AR UPD/FCB, EWL/WL/NL, ILS, LAMBDA, TCAR, PAR, validation INS integration INS sensors, Inertial navigation, INS integration POD of satellites orbit element, orbit model, reduced-dynamic, ECI-ECEF transformation, precession/nutation, EOP	

Notations

c	: Speed of light (m/s)	I_r^s	: Ion
P_{r,L_i}^s	: L _i Peudorange measurement (m)	T_r^s	: Tro
ϕ^s_{r,L_i}	: L _i Carrier phase measurement (cyc)	\mathbf{f}_{i}	: L _i c
Φ^s_{r,L_i}	: L _i Phase-range measurement (m)	λ_{i}	: L _i c
t _r	: Signal reception time (s)	B_{r,L_i}^s	: L _i C
t ^s	: Signal transmission time (s)	N_{r,L_i}^s	: L _i C
$ ho_r^s$: Geometric range (m)	ε _p	: Coo
$\mathbf{r}^{s}(t)$: Satellite position in ECEF (m)	ϵ_{Φ}	: Pha
$\mathbf{v}^{s}(t)$: Satellite velocity in ECEF (m)	ω _e	: Ear
r _r	: Receiver position in ECEF (m)	Z_t	: Zer
$\mathbf{e}_{\mathrm{r}}^{\mathrm{s}}$: LOS vector in ECEF	Z_{h}	: Zer
$\mathbf{e}_{r,enu}^{s}$: LOS vector in local coordinates	Z_{w}	: Zer
ϕ_r	: Latitude of receiver position (rad)	m _h (El)	: Hyd
λ_r	: Longitude of receiver position (rad)	$m_w(El)$: We
h _r	: Ellipsoidal height of receiver (m)	U(t)	: ECE
H _r	: Orthometric height of receiver (m)	$\mathbf{E}_{\mathbf{r}}$: ECE
Az_r^s	: Azimuth angle of satellite (rad)	$\mathbf{E}^{\mathbf{s}}$: ECE
El_r^s	: Elevation angle of satellite (rad)	$\mathbf{R}_{\mathrm{x}}(\mathbf{\theta})$: Coo
dt _r	: Receiver clock bias (s)	$\mathbf{R}_{y}(\theta)$: Coo
$dT^{s}(t)$: Satellite clock bias (s)	$\mathbf{R}_{z}(\theta)$: Coo

- : Ionospheric delay (m)
- r^s : Tropospheric delay (m)
- : L_i carrier frequency (Hz)
- $_{i}$: L_i carrier wavelength (m)
- E_{L_i} : L_i Carrier phase bias (m)
- I_{r,L_i}^{s} : L_i Carrier phase ambiguity (cyc)
- ϵ_{p} : Code measurement error (m)
- ϵ_{Φ} : Phase measurement error (m)
- ω_{e} : Earth rotation velocity (rad/s)
 - $\frac{1}{t}$: Zenith total delay (m)
- z_h : Zenith hydrostatic delay (m)
- Z_{w} : Zenith wet delay (m)
- $n_{h}(El)$: Hydrostatic mapping function
- $n_w(El)$: Wet mapping function
- $\mathbf{U}(t)$: ECEF to ECI transformation matrix
- \mathbf{E}_{r} : ECEF to local coordinates rotation matrix
- **E**^s : ECEF to satellite body rotation matrix
- $\textbf{R}_{x}(\theta)\,$: Coordinates rotation matrix around X
- $\textbf{R}_{y}(\theta)\,$: Coordinates rotation matrix around Y
- $\mathbf{R}_{z}^{T}(\theta)$: Coordinates rotation matrix around Z

Ambiguity Resolution (AR)

Ambiguity Resolution (AR)

Objectives of AR

More accurate solutions after proper AR (FIXED vs. FLOAT) Faster solution convergence, ideally FIXED instantaneously Carrier phase observables can be handled as precise pseudorange after AR

Initial phase terms should be eliminated for AR

Both of satellite and receiver initial phases do not have integer nature DD (double difference) used for baseline processing like RTK

ZD (zero-difference) carrier-phase

 $\Phi^s_r = \rho^s_r + c(dt_r - dT^s(t^s)) - I^s_r + T^s_r + d^s_r + \lambda d_{pw} + \lambda(\phi_{r,0} - \phi^s_0 + N^s_r) + \epsilon_{\Phi}$

DD (double-difference) carrier-phase for baseline processing

 $\Phi^{ij}_{rb} = \rho^{ij}_{rb} - I^{ij}_{rb} + T^{ij}_{rb} + d^{ij}_{rb} + \lambda d^{ij}_{pw,rb} + \lambda N^{ij}_{rb} + \epsilon_{\Phi}$

 $\Phi_{rb}^{ij} pprox
ho_{rb}^{ij} + \lambda N_{rb}^{ij} + \epsilon_{\Phi}$ (short-baseline, same antenna)

- O^{ij} : Difference between satellite i and j
- $O_{\mbox{\scriptsize rb}}~$: Difference between receiver r and b
- N_r^s : Integer ambiguity (cyc)
- ϕ_0^{s} : Satellite initial phase (cyc)
- $\boldsymbol{\varphi}_{r,0}~$: Receiver initial phase (cyc)

FIXED Solution with AR

Typical AR Steps ^[1]

(3) $\hat{a} \rightarrow \breve{a}$

(1) $y = Hx + \varepsilon = Aa + Bb + \varepsilon$ $(a \in Z^n, b \in R^p)$ Mixed-integer measurement models (2) $\hat{\mathbf{x}} = \begin{pmatrix} \hat{\mathbf{a}} \\ \hat{\mathbf{b}} \end{pmatrix}, \mathbf{Q}_{\hat{\mathbf{x}}} = \begin{pmatrix} \mathbf{Q}_{\hat{\mathbf{a}}} & \mathbf{Q}_{\hat{\mathbf{a}}\hat{\mathbf{b}}} \\ \mathbf{Q}_{\hat{\mathbf{b}}\hat{\mathbf{a}}} & \mathbf{Q}_{\hat{\mathbf{b}}} \end{pmatrix}$ FLOAT solution and VC matrix by LSE or KF

Mapping FLOAT to FIXED

(4)
$$\breve{\mathbf{b}} = \hat{\mathbf{b}} - \mathbf{Q}_{\hat{\mathbf{b}}\hat{\mathbf{a}}} \mathbf{Q}_{\hat{\mathbf{a}}}^{-1} (\hat{\mathbf{a}} - \breve{\mathbf{a}})$$

FIXED solution

Mapping FLOAT to FIXED ($\hat{a} \rightarrow \breve{a}$) -Integer Rounding (IR)

$$\mathbf{\breve{a}} = [\hat{\mathbf{a}}] = ([\hat{a}_1], [\hat{a}_2], ..., [\hat{a}_n])^T$$

Integer Bootstrapping (conditional sequential rounding) (IB)

$$\begin{split} \breve{\mathbf{a}} = & \left[\left[\hat{a}_1 \right], \left[\hat{a}_2 - \sigma_{2l} \sigma_l^{-2} (\hat{a}_1 - \breve{a}_1) \right], \dots, \left[\hat{a}_n - \sum_{i=l}^{n-1} \sigma_{n,i|I} \sigma_{i|I}^{-2} (\hat{a}_{i|I} - \breve{a}_i) \right] \right] \end{split}$$

$$\\ \textbf{Integer Least Squares (ILS)} \end{split}$$

$$\breve{\mathbf{a}} = \operatorname*{arg\,min}_{\mathbf{a}\in\mathbf{Z}} (\mathbf{\hat{a}} - \mathbf{a})^{\mathrm{T}} \mathbf{Q}_{\mathbf{\hat{a}}}^{-1} (\mathbf{\hat{a}} - \mathbf{a})^{\mathrm{T}} \mathbf{Q}_{\mathbf$$

: Integer ambiguity parameters : Other parameters b : FLOAT solutions â.b $\mathbf{\tilde{a}}, \mathbf{\tilde{b}}$: FIXED solutions [x] : Rounding to the nearest integer $\mathbf{Q}_{\hat{\mathbf{a}}} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2n} \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$

$$\begin{bmatrix} \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_n^2 \end{bmatrix}$$

^[1] P. J. G. Teunissen and O. Montenbruck (eds.), Springer Handbook of Global Navigation Satellite Systems, 2017, Springer, Section 23

AR by ILS

Technique	Reference	Ambiguity Search Method	Data Processing Method	Search Space Handling Method	Note
LSAST	Hatch, 1990	Independent	Single-epoch	None	Least-Squares Ambiguity Search Technique
FARA	Frei and Beutler, 1990	All	Multi-epoch	Conditional	Fast Ambiguity Resolution Approach
Modified Cholesky Decomposition	Euler and Landau, 1992	All	Multi-epoch	None	
LAMBDA	Teunissen, 1994	All	Multi-epoch	Transformation/ Conditional	Least-squares AMBiguity Decorrelation Adjustment
Null Space	Martin-Neira, 1995	Independent	Single-epoch	Transformation	
FASF	Chen and Lachapelle, 1995	All	Multi-epoch	Conditional	Fast Ambiguity Search Filter
OMEGA	Kim and Langley, 1999	Independent	Single/ Multi-epoch	Transformation/ Conditional	Optimal Method for Estimating GPS Ambiguities

AR Techniques based on ILS [1]

[1] D. Kim and B. Langley, GPS Ambiguity Resolution and Validation: Methodologies, Trends and Issues, 7th Workshop International Symposium on GPS/GNSS, 2000

LAMBDA

Least-squares AMBiguity Decorrelation Adjustment^[1]

- A GNSS AR strategy by ILS estimator
- Shrinking integer search space with "decorrelation"
- Skillful and efficient tree search strategy
- Similar to "Closest Point Search with LLL Lattice Basis Reduction" Algorithm^[2]

- [1] P. J. G. Teunissen, The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy, 1994
- [2] E. Agrell, Closest point search in lattices, IEEE Transaction on Information Theory, 2002

CPU Time for LAMBDA

^[1] X. -W. Chang, X. Yang and T. Zhou, MLAMBDA: A modified LAMBDA method for integer least-squares estimation, Journal of Geodesy, 2005

Validation of AR

Acceptance Test after AR

Wrong AR much degrades the quality of the final (FIXED) solution Need to maximize AR success probability and to minimize AR failure rate Remain ambiguities FLOAT if the acceptance test failed and output FLOAT solution instead Several acceptance tests are proposed: ^[1]

- **Note:** The test thresholds are usually selected empirically as a fixed value (for example Ratio Test with c = 3). The threshold value, however, is often optimistic or conservative without theoretical basis. In some literatures, variable threshold values are proposed base on fixed-failure rate approach (FF-RT)^[2].
 - [1] S. Verhagen and P. J. G. Teunissen, New global navigation satellite system ambiguity resolution method compared to exiting approaches, Journal of Guidance, Control and Dynamics, 2006
 - [2] S. Verhagen and P. J. G. Teunissen, The ratio test for future GNSS ambiguity resolution, GPS Solution, 2013

Partial AR (PAR)

Partial AR (PAR)

Full AR (FAR) indicates low fixing ratio or long TTFF under ill conditions like long BL RTK Newly rising satellites or cycle-slips often disturbs FAR with validation Degraded accuracy by PAR solutions acceptable in many applications

Many criteria how to select subset of ambiguities:

Elevation angle, continuous tracking epochs, SNR, ADOP (ambiguity dilution of precision), EWL/WL/NL, success or failure probability of AR

[1] S. Verhagen et al., GNSS ambiguity resolution: which subset to fix ?, International GNSS Symposium, 2011

WL/NL AR with lono-free LC

L1/L2 AR with STEC Estimation

I : Slant ionospheric delay (STEC) at L1 frequency (m) $\gamma = (\lambda_2 / \lambda_1)^2$

TCAR/CIR

TCAR (three-carrier AR)^[1] /CIR (cascade integer resolution)^[2]

Sequential conditional rounding EWL -> WL -> NL ambiguities

Geometry-free measurement model

Ionosphere terms can be reduced by short baseline or ionosphere corrections (for PPP) Many modifications or enhancements including geometry-based models

$$(1) \ \tilde{N}_{EWL} = \left[\frac{\Phi_{EWL} - P_{X}}{\lambda_{EWL}}\right]
(2) \ \tilde{N}_{WL} = \left[\frac{\Phi_{WL} - (\Phi_{EWL} - \lambda_{EWL}\tilde{N}_{EWL})}{\lambda_{WL}}\right]
(3) \ \tilde{N}_{NL} = \left[\frac{\Phi_{NL} - (\Phi_{WL} - \hat{N}_{WL})}{\lambda_{NL}}\right]
(4) \ \tilde{N}_{NL} = \left[\frac{\Phi_{NL} - (\Phi_{WL} - \hat{N}_{WL})}{\lambda_{NL}}\right]
(5) \ \tilde{N}_{NL} = \left[\frac{\Phi_{NL} - (\Phi_{WL} - \hat{N}_{WL})}{\lambda_{NL}}\right]
(6) \ \tilde{N}_{NL} = \left[\frac{\Phi_{NL} - (\Phi_{WL} - \hat{N}_{WL})}{\lambda_{NL}}\right]
(7) \ \tilde{N}_{NL} = \left[\frac{\Phi_{NL} - (\Phi_{WL} - \hat{N}_{WL})}{\lambda_{NL}}\right]
(8) \ \tilde{N}_{NL} = \left[\frac{\Phi_{NL} - (\Phi_{WL} - \hat{N}_{WL})}{\lambda_{NL}}\right]
(9) \ \tilde{N}_{NL} = \left[\frac{\Phi_{NL} - (\Phi_{WL} - \hat{N}_{WL})}{\lambda_{NL}}\right]
(9) \ \tilde{N}_{NL} = \left[\frac{\Phi_{NL} - (\Phi_{WL} - \hat{N}_{WL})}{\lambda_{NL}}\right]
(9) \ \tilde{N}_{NL} = \left[\frac{\Phi_{NL} - (\Phi_{WL} - \hat{N}_{WL})}{\lambda_{NL}}\right]
(9) \ \tilde{N}_{NL} = \left[\frac{\Phi_{NL} - (\Phi_{WL} - \hat{N}_{WL})}{\lambda_{NL}}\right]
(9) \ \tilde{N}_{NL} = \left[\frac{\Phi_{NL} - (\Phi_{WL} - \hat{N}_{WL})}{\lambda_{NL}}\right]
(9) \ \tilde{N}_{NL} = \left[\frac{\Phi_{NL} - (\Phi_{WL} - \hat{N}_{WL})}{\lambda_{NL}}\right]
(9) \ \tilde{N}_{NL} = \left[\frac{\Phi_{NL} - (\Phi_{WL} - \hat{N}_{WL})}{\lambda_{NL}}\right]
(9) \ \tilde{N}_{NL} = \left[\frac{\Phi_{NL} - (\Phi_{WL} - \hat{N}_{WL})}{\lambda_{NL}}\right]
(9) \ \tilde{N}_{NL} = \left[\frac{\Phi_{NL} - (\Phi_{WL} - \hat{N}_{WL})}{\lambda_{NL}}\right]
(9) \ \tilde{N}_{NL} = \left[\frac{\Phi_{NL} - (\Phi_{WL} - \hat{N}_{WL})}{\lambda_{NL}}\right]
(9) \ \tilde{N}_{NL} = \left[\frac{\Phi_{NL} - (\Phi_{WL} - \hat{N}_{WL})}{\lambda_{NL}}\right]
(9) \ \tilde{N}_{NL} = \left[\frac{\Phi_{NL} - (\Phi_{WL} - \hat{N}_{WL})}{\lambda_{NL}}\right]
(9) \ \tilde{N}_{NL} = \left[\frac{\Phi_{NL} - (\Phi_{WL} - \hat{N}_{WL})}{\lambda_{NL}}\right]$$

Typical Selection of EWL, WL and NL for GPS

$$P_{X} = \frac{P_{L2} / \lambda_{2} + P_{L5} / \lambda_{5}}{1 / \lambda_{2} + 1 / \lambda_{5}}, \Phi_{EWL} = \frac{\Phi_{L2} / \lambda_{2} - \Phi_{L5} / \lambda_{5}}{1 / \lambda_{2} - 1 / \lambda_{5}}, \Phi_{WL} = \frac{\Phi_{L1} / \lambda_{1} - \Phi_{L2} / \lambda_{2}}{1 / \lambda_{1} - 1 / \lambda_{2}}, \Phi_{NL} = \Phi_{L1} / \lambda_{1} - \Phi_{L2} / \lambda_{2}$$

- [1] U. Vollath et al., Analysis of three-carrier ambiguity resolution (TCAR) technique for precise relative positioning in GNSS-2, ION GPS-98
- [2] J. Jung and P. Enge, Optimization of cascade integer resolution with three civil GPS frequency, ION GPS 2000

Triple Frequency LC

	$\Phi -\frac{i/\lambda}{\lambda}$	Φ_{L1}	+ j / 2	$\lambda_2 \Phi_L$	₂ + k	$/\lambda_5$	\mathbf{D}_{L5}	p $-\frac{1}{2}$	$\lambda_1 P_{L1} + m / \lambda$	$_{2}P_{L2} + n / \lambda$	$V_5 P_{L5}$	
	$\Psi_{(i,j,k)}$ –	i / 2	$\lambda_1 + j$	$/\lambda_2$	+ k /	λ_5		$\mathbf{I}_{(l,m,n)}$ –	$1/\lambda_1 + m/$	$\lambda_2 + n / \lambda_5$		
Tuno			(Coeffi	cients	5		λ_{LC}	ILC	$\sigma_{\rm L}$.c	Noto
туре	LC	i	j	k	1	m	n	(cm)	(wrt P1)	(cm)	(cyc)	NOLE
	$\Phi_{_{(1,0,0)}}$	1	-	-	-	-	-	19.0	-1	0.3	0.016	NL
	$\Phi_{_{(0,1,0)}}$	-	1	-	-	-	-	24.4	-1.647	0.3	0.012	NL
	$\Phi_{_{(0,0,1)}}$	-	-	1	-	-	-	25.5	-1.793	0.3	0.012	NL
	$\Phi_{_{(1,-1,0)}}$	1	-1	-	-	-	-	86.1	1.283	1.7	0.020	WL
Geometry	$\Phi_{_{(1,0,-1)}}$	1	-	-1	-	-	-	75.1	1.339	1.5	0.020	WL
Based	$\Phi_{_{(0,1,-1)}}$	-	1	-1	-	-	-	586.1	1.719	10.0	0.017	EWL
	$\Phi_{(1,-6,5)}$	1	-6	5	-	-	-	325.6	0.074	31.1	0.096	EWL
	$\Phi_{_{(1,-5,4)}}$	1	-5	4	-	-	-	209.3	0.662	16.5	0.079	EWL
	$\Phi_{(4,-3,0)}$	4	-3	-	-	-	-	11.4	-0.090	0.8	0.073	NL
	$\Phi_{_{(4,0,-3)}}$	4	-	-3	-	-	-	10.8	0.010	0.8	0.072	NL
	$\Phi_{(1,-1,0)} - P_{(1,1,0)}$	1	-1	-	1	1	-	86.1	0	21.4	0.249	WL
	$\Phi_{(1,0,-1)} - P_{(1,0,1)}$	1	-	-1	1	-	1	75.1	0	21.5	0.286	WL
Coordination	$\Phi_{(0,1,-1)} - P_{(0,1,1)}$	-	1	-1	-	1	1	586.1	0	23.4	0.040	EWL
Geometry	$\Phi_{(1,-6,5)} - P_{(1,1,1)}$	1	-6	5	1	1	1	325.6	-1.360	35.7	0.110	EWL
nee	$\Phi_{(1,-6,5)} - P_{(1,1,0)}$	1	-6	5	1	1	-	325.6	-1.209	37.8	0.116	EWL
	$\Phi_{(1,-5,4)} - P_{(1,1,1)}$	1	-5	4	1	1	1	209.3	-0.773	24.1	0.115	EWL
	$\Phi_{(1,-5,4)} - P_{(1,1,0)}$	1	-5	4	1	1	-	209.3	-0.622	27.0	0.129	EWL
	$\lambda_{rc} = \frac{1}{1}$		$N_{LC} =$	i · N +	· i · N.	$+ \mathbf{k} \cdot \mathbf{N}$	(e	$I_{\rm LC} = -\frac{i/\lambda_1 + j \cdot \lambda_2}{i/\lambda_1 + j \cdot \lambda_2}$	$\lambda_2 / \lambda_1^2 + \mathbf{k} \cdot \lambda_5 / \lambda_1^2$	$\frac{1/\lambda_1 + m \cdot \lambda_2}{2}$	$\lambda_1^2 + n \cdot \lambda_5 / \lambda_1^2$	
	$i/\lambda_1 + j/\lambda_2 + k$	/λ ₅	- ·LC	·LI ·	J - 12	1	L5	$i / \lambda_1 +$	$-j/\lambda_2 + k/\lambda_5$	$1 / \lambda_1 + m /$	$\lambda_2 + n / \lambda_5$	
	$\sigma_{\rm LC} = $	$\frac{(i / \lambda_1)}{(i / \lambda_2)}$	$(j^2 + (j/2)^2)^2 + (j/2)^2$ $\lambda_1 + j/2$	$\frac{\lambda_2}{\lambda_2 + k}$	$\frac{k/\lambda_5)^2}{\lambda_5)^2}$	$-\sigma_{\Phi}^2 + \frac{(1-\sigma_{\Phi}^2)^2}{(1-\sigma_{\Phi}^2)^2}$	$\frac{1}{(1/\lambda_1)^2} - \frac{1}{(1/\lambda_1)^2}$	$\frac{(m/\lambda_2)^2 + (n/\lambda_5)^2}{(m/\lambda_2 + n/\lambda_5)^2}$	$\frac{\partial^2}{\partial \sigma_{\rm P}^2} \sigma_{\rm P}^2 \qquad (\sigma_{\rm \Phi} = 0)$	$.3\mathrm{cm},\ \sigma_{\mathrm{p}}=30\mathrm{cm}$	m)	

PPP-AR

PPP-AR

PPP (w/o AR)

Developed by JPL in 1990s to facilitate the analysis of large reference station N/W data^[1] Conventionally PP (post processing) with IGS precise ephemeris

AR has been difficult due to unknown satellite initial phase term

$$\Phi_{r}^{s} = \rho_{r}^{s} + c(dt_{r} - dT^{s}(t^{s})) - I_{r}^{s} + T_{r}^{s} + d_{r}^{s} + \lambda d_{pw} + \lambda(\phi_{r,0} - \phi_{0}^{s} - N_{r}^{s}) + \varepsilon_{\Phi}$$

PPP-AR (PPP with AR)

Satellite initial phase

Many research works have been done to introduce AR for PPP

- Based on FCB (fractional cycle bias) or UPD (uncalibrated phase delay)^[2]

- Based on IRC (integer recovery clock) or decoupled clock model^[3]
- Based on globally estimated phase ambiguities in reference station N/W^[4]

Recently PPP-AR is enhanced to RT (real-time)^[5] and multi-constellation GNSS

Commercial PPP Services based on PPP-AR

Several services have been already launched since 2000s

- [1] J. F. Zumberge et al., Precise Point Positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research, 1997
- [2] M. Ge et al., Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observation, Journal of Geodesy, 2008
- [3] P. Collins et al., Precise Point Positioning with ambiguity resolution using the decoupled clock model, ION ITM 2008
- [4] W. Bertiger et al., Single receiver phase ambiguity resolution with GPS data, Journal of Geodesy, 2010
- [5] D. Laurichesse et al., Real time-difference ambiguities fixing and absolute RTK, ION NTM 2008

RT PPP-AR

[1] J. Geng et al., Towards PPP-RTK: Ambiguity resolution in real-time precise point positioning, Advances in Space Research, 2010

FCB/UPD Generation

[1] X. Li et al., A method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning, Journal of Geodesy, 2013

FCB/UPD Examples

20

PPP-AR Example

🗧 FLOAT 🏾 🖲 FIXED

(MADOCA 0.7.2, GENFCB 1.2, RTKLIB 2.4.2, GEONET 3012, 2014/10/15 0:00:00-23:59:30 GPST)

Commercial PPP Services

Service	Provider	Supported GNSS	# of Ref. Stations	Comm. Link	Receivers	Accuracy
StarFire ^{™ [1]}	A John Deven Company (US)	GPS, GLO	> 40	3 GEO (L-band), IP	NavCom	< 5 cm
Seastar [™] ^[2]		GPS, GLO, GAL, BDS (G4)	~ 80	6 GEO (L-band), IP (NTRIP)	Fugro	10 cm H 15 cm V (95%)
Apex/Ultra ^[3] TerraStar ^{® [4]}	∨eripos ∲ (UK)	GPS, GLO, GAL, BDS, QZS (Apex⁵)	~ 80	7 GEO (L-band)	VERIPOS, NovAtel ^[7] , Septentrio ^[8] , TOPCON ^[9] , Hemisphere ^[10]	< 5 cm H < 12 cm V (95%)
CenterPoint RTX ^[5]	(US)	GPS, GLO, GAL, BDS, QZS	~ 100	6 GEO (L-band), IP (NTRIP)	Trimble, Qualcomm (?)	2 cm H 5 cm V (RMS)
magicGNSS ^[6]	(Spain)	GPS, GLO, GAL, BDS, QZS	~ 80	IP (NTRIP)	(RTCM SSR)	5 cm H 8 cm V (RMS)
GEOFLEX ^[11]	geofiex (France)	GPS, GLO, (GAL, BDS)	~ 100	GEO, IP, GPRS/UMTS	(RTCM SSR)	4 cm (2D-95%)

[1] https://www.navcomtech.com, [2] https://www.fugro.com, [3] https://veripos.com, [4] https://www.terrastar.net,
 [5] https://positioningservices.trimble.com, [6] https://magicgnss.gmv.com, [7] https://www.notavel.com,
 [8] https://www.septentrio.com, [9] https://www.topconpositioning.com, [10] https://www.hemispheregnss.com,

[11] http://www.geoflex.fr

PPP Service Performance

Table 5: Error Statistics at the Canada Station

PPP Correction Source	Horizontal RMS Error (cm)	Vertical RMS Error (cm)
TerraStar-C (GPS/GLONASS)	3.3	4.9
TerraStar-C (GPS only)	4.4	6.5

(NovAtel Correct with TerraStar-C in 2015)

[1] NovAtel White Paper, Precise Positioning with NovAtel CORRECT Including Performance Analysis, April 2015 (https://www.novatel.com/assets/Documents/Papers/NovAtel-CORRECT-PPP.pdf)

Faster Convergence for PPP-AR

PPP-RTK

PPP-AR with local STEC and troposphere corrections High bandwidth required to support broad coverage larger than nation-wide

Dense CORS N/W required for local corrections

Supported by CLAS and some commercial PPP services

Fast-PPP^[1]

PPP-AR with global VTEC corrections

Multi-layer model for global VTEC model

Low bandwidth to transmit corrections for global coverage

Instantaneous cm-level PPP^[2]

No local or global TEC corrections

Cascading PPP-AR with triple or quad frequencies (L1-L2-L5, E1-E5a-E5b-E6)

Fast-PPP^[1]

- [2] D. Laurichesse and S. Banville, Innovation: Instantaneous centimeter-level multi-frequency precise point positioning, GPS World, 2018