For JAXA R&D

PPP - Models, Algorithms and Implementations (6-2)

Tomoji TAKASU

2020-03-13 @Tokyo, Japan

PPP - Models, Algorithms and Implementation

1. 2019-10-04 **PPP models**

geometric range, ionosphere, troposphere, antenna PCV, earth tides, wind-up, relativity, biases, coordinates

- 2. 2019-10-18 **PPP algorithms** SPP, LSQ, GN, EKF, noise-model, RAIM/QC, LAPACK/BLAS
- 2019-11-01 PPP data handling LC, interpolation, slip detection, RINEX, SP3, ANTEX, RTCM, CSSR
- 4. 2019-11-22 **PPP-AR** UPD/FCB, EWL/WL/NL, ILS, LAMBDA, TCAR, PAR, validation
- 5. 2019-12-06 INS integration

INS sensors, Inertial navigation, INS integration

6. 2019-12-20 **POD of satellites**

orbit element, orbit model, reduced-dynamic, ECI-ECEF transformation, precession/nutation, EOP

Satellite Orbit Model

Two-Body Problem

Satellite Dynamics by Two-body Problem

 $\frac{\mathrm{d}^2 \mathbf{r}(t)}{\mathrm{d}t^2} = -\frac{\mathrm{GM}_{\mathrm{e}} \mathbf{r}(t)}{\mathrm{r}^3}$

Satellite Position and Velocity (in ECI)

Satellite Orbit Model

State Vector of Satellite (in ECI)

$$\mathbf{x}(t) = \begin{pmatrix} \mathbf{r}(t) \\ \mathbf{v}(t) \end{pmatrix} = (x, y, z, v_x, v_y, v_z)^{\mathrm{T}}$$

ODE for Satellite Dynamics

$$\frac{d\mathbf{x}(t)}{dt} = \frac{d}{dt} \begin{pmatrix} \mathbf{r}(t) \\ \mathbf{v}(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ \mathbf{a}(t, \mathbf{r}(t), \mathbf{v}(t), \mathbf{p}) \end{pmatrix}$$

Satellite Acceleration (in ECI)

 $\mathbf{a}(t, \mathbf{r}(t), \mathbf{v}(t), \mathbf{p}) =$ $\mathbf{a}_{geop} + \mathbf{a}_{body} + \mathbf{a}_{drag} + \mathbf{a}_{srp} + \mathbf{a}_{thru} + \mathbf{a}_{rel} + \mathbf{a}_{emp}$

Geopotential (1/2)

 $\mathbf{r}(t)$: Satellite Position in ECI (m) \mathbf{r}' : Satellite Position in ECEF (m) $\mathbf{U}(t)$: ECI to ECEF trans. matrix \mathbf{R}_{e} : Equatorial radius of the Earth (m)

Geopotential (2/2)

Geopotential Models

Model	Author	Coefficients	Tide System	References
JGM-3	NASA GSFC, UT CSR	70 x 70	zero-tide	Tapley et al., 1996
EGM96	NASA GSFC, NIMA	360 x 360	tide-free	https://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/ egm96.html
EIGEN-GL04C	GFZ, GRGS	360 x 360	tide-free	http://op.gfz-potsdam.de/grace/results/grav/ g005_eigen-gl04c.html
EGM2008 ^[1]	NGA	2190 x 2190	tide-free	https://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008

Corrections to Geopotential Coefficients

$$\begin{split} & \overline{C}_{20} = \overline{C}_{20,model} + \dot{\overline{C}}_{20}(t - t_{J2000}) + \Delta \overline{C}_{20} \\ & \overline{C}_{30} = \overline{C}_{30,model} + \dot{\overline{C}}_{30}(t - t_{J2000}) + \Delta \overline{C}_{30} \\ & \overline{C}_{40} = \overline{C}_{40,model} + \dot{\overline{C}}_{40}(t - t_{J2000}) + \Delta \overline{C}_{40} \\ & \overline{C}_{21} = \sqrt{3} \overline{x}_{p} \overline{C}_{20} - \overline{x}_{p} \overline{C}_{22,model} + \overline{y}_{p} \overline{S}_{22,model} + \Delta \overline{C}_{21} \\ & \overline{S}_{21} = -\sqrt{3} \overline{y}_{p} \overline{C}_{20} - \overline{y}_{p} \overline{C}_{22,model} - \overline{x}_{p} \overline{S}_{22,model} + \Delta \overline{S}_{21} \\ & \overline{C}_{nm} = \overline{C}_{nm,model} + \Delta \overline{C}_{nm}, \overline{S}_{nm} = \overline{S}_{nm,model} + \Delta \overline{S}_{nm} \quad \text{(others)} \\ & \overline{C}_{nm,model}, \overline{S}_{nm,model} : \text{Geopotential model coefficients} \\ & \dot{\overline{C}}_{nm} & : \text{Rate of geopotential coefficients} (year^{-1}) ([1] 6.1) \\ & \overline{x}_{p}, \overline{y}_{p} & : \text{IERS conventional mean pole (rad) ([1] 7.1.4) \\ & \end{array}$$

 $\Delta \overline{C}_{nm}, \Delta \overline{S}_{nm}$: Corrections to geopotential coefficients ([1] 6.2 ~ 6.5) (solid earth tides + ocean tides + solid earth pole tide + ocean pole tide)

EGM2008 Model

GM R	_e	= 398600.4415 (km ³ /s ²) = 6378136.3 (m)	$(n,m \le 5)$
n	m	C nm	S nm
2	0	-0.484165143790815E-03	0.000000000000000E+00
2	1	-0.206615509074176E-09	0.138441389137979E-08
2	2	0.243938357328313E-05	-0.140027370385934E-05
3	0	0.957161207093473E-06	0.000000000000000000000000000000000000
3	1	0.203046201047864E-05	0.248200415856872E-06
3	2	0.904787894809528E-06	-0.619005475177618E-06
3	3	0.721321757121568E-06	0.141434926192941E-05
4	0	0.539965866638991E-06	0.000000000000000000000000000000000000
4	1	-0.536157389388867E-06	-0.473567346518086E-06
4	2	0.350501623962649E-06	0.662480026275829E-06
4	3	0.990856766672321E-06	-0.200956723567452E-06
4	4	-0.188519633023033E-06	0.308803882149194E-06
5	0	0.686702913736681E-07	0.000000000000000000000000000000000000
5	1	-0.629211923042529E-07	-0.943698073395769E-07
5	2	0.652078043176164E-06	-0.323353192540522E-06
5	3	-0.451847152328843E-06	-0.214955408306046E-06
5	4	-0.295328761175629E-06	0.498070550102351E-07
5	5	0.174811795496002E-06	-0.669379935180165E-06

[1] G. Petit and B. Luzum (eds.), IERS Technical note No. 36: IERS Conventions (2010), 2010

3rd-body Gravities

Acceleration due to 3rd-body Gravities

$$\mathbf{a}_{\text{body}} = \sum_{p} \left\{ GM_{p} \left(\frac{\mathbf{r}_{p}(t) - \mathbf{r}(t)}{\left| \mathbf{r}_{p}(t) - \mathbf{r}(t) \right|^{3}} - \frac{\mathbf{r}_{p}(t)}{\left| \mathbf{r}_{p}(t) \right|^{3}} \right) \right\}$$

- $\mathbf{r}(t)$: Satellite position at time t in ECI (m)
- $\mathbf{r}_{p}(t)$: Planet p position at time t in ECI (m)
- GM_p : Planet p gravitational constants (m³/s²)

Planet Positions by Planetary Ephemeris

NASA JPL DE	(Planetary	y and Lunar	Ephemerides)[1]
-------------	------------	-------------	--------------------	------

Ephemeris	Release	Span (AD)	Time Scale	Coordinates Frame	Additional Parameters
DE200	1981	Dec 9, 1599 - Mar 31, 2169	TDB	Dynamical equator and equinox in J2000	Nutation
DE405	1998	Dec 9, 1599 - Feb 20, 2201	TDB	ICRF	Nutation, libration
DE421	2008	Jul 29, 1899 - Oct 9, 2053	TDB	ICRF	Nutation, libration

$$\begin{split} \tau &= 2(t - t_k) / (t_{k+1} - t_k) - 1 \qquad (t_k \leq t < t_{k+1}) \\ \mathbf{R}_p(t) &= \sum_{i=0}^{n-1} \mathbf{a}_{p,i} T_i(\tau) \\ \mathbf{r}_{sun}(t) &= \mathbf{R}_{sun}(t) - \mathbf{R}_{EMB}(t) + \mathbf{R}_{moon}(t) / (1 + \mu) \\ \mathbf{r}_{moon}(t) &= \mathbf{R}_{moon}(t) \\ \mathbf{r}_p(t) &= \mathbf{R}_p(t) - \mathbf{R}_{sun}(t) + \mathbf{r}_{sun}(t) \quad (\text{except for sun and moon}) \\ \mathbf{R}_p(t) : \text{Planet p ephemeris position at time t (m)} \\ \mathbf{a}_{p,i} : \text{Planet p i th-order coefficients in ephemeris} \end{split}$$

 μ : Ratio of Earth's / Moon's masses

 $T_i(\tau) : \textbf{Chebyshev polynomial} \ \left(T_0(\tau) = 0, T_1(\tau) = 1, T_i(\tau) = 2\tau T_{i-1}(\tau) - T_{i-2}(\tau)\right)$

[1] https://ssd.jpl.nasa.gov/?planet_eph_export, ftp://ssd.jpl.nasa.gov/pub/eph/planets/planets

Atmospheric Drag

Acceleration due to Atmospheric Drag

$$\mathbf{a}_{drag} = -\frac{1}{2} C_{D} \frac{A}{m} \rho(\mathbf{r}(t)) |\mathbf{v}_{r}| \mathbf{v}_{r}$$

 $\mathbf{v}_{\rm r} = \mathbf{v}(t) - \boldsymbol{\omega}_{\rm e} \times \mathbf{r}(t)$

- C_{D} : Drag coefficient
- A : Cross-section area of satellite (m²)
- m : Mass of satellite (kg)
- $\rho(\boldsymbol{r}(t))$: Total atmospheric density (kg/m³)
 - $\mathbf{v}_{\rm r}~$: Relative velocity of satellite to atmosphere (m/s)
 - $\omega_{_{e}}~$: Earth rotation vector

Model	Release	Author	Altitude	S/W Library	References
Jacchia 1977	1977	L. G. Jacchia	90 - 250 km	Fortran	L. G. Jacchia, 1977
NRLMSISE-00	2000	US NRL	0 - 500 km	Fortran, C	https://www.nrl.navy.mil/ssd/branches/7630/ modeling-upper-atmosphere
JB2008	2008	B. R. Bowman et al.	175 - 1000 km	Fortran	http://sol.spacenvironment.net/jb2008/
DTM-2013	2014	S. Bruinsma	200 - 900 km	?	S. Bruinsma, 2015

Solar Activity Data for Atmosphere Models^{[1][2]}

K-index : Local index of the 3-hours range in magnetic activity relative to an assumed quiet-day curve

Kp-index : 3-hours range index of mean K-index from 13 geomagnetic observatories sites.

Ap-index : 3-hours range index derived from Kp index

F10.7-index : Solar radio flux at 10.7 cm (2800 MHz) radio wave

[1] Celestrak Space Weather Data (https://www.celestrak.com/SpaceData/)

[2] Celestrak Space Weather Data Documentation (https://www.celestrak.com/SpaceData/SpaceWx-format.php)

Upper Atmosphere Models

SRP (1/2)

Acceleration due to SRP (Solar Radiation Pressure)

(1) Cannonball Model AU : Astronomical unit (= 1.49598 x 10¹¹ m) R : Sun-satellite range (m) $\mathbf{a}_{srp} = -F\left(\frac{AU}{R}\right)^2 P_{sun}C_R \frac{A}{m}\mathbf{e}_d$ P_{sun} : Solar constant (=4.56 x 10⁻⁶ N/m²) $\mathbf{R} = |\mathbf{r}_{sun} - \mathbf{r}(t)|$ C_{R} : Radiation pressure coefficient A : Cross-section area of satellite (m²) $\mathbf{e}_{z} = -\mathbf{r}(t) / |\mathbf{r}(t)|$ (2) Macro Satellite Model m : Mass of satellite (kg) $\mathbf{e}_{d} = (\mathbf{r}_{sun} - \mathbf{r}(t))/R$ $\mathbf{a}_{srp} = -F\left(\frac{AU}{R}\right)^2 \frac{P_{sun}}{m} \sum A_s \left\{ \cos\theta_s \left((1 - \varepsilon_s) \mathbf{e}_d + 2\varepsilon_s \cos\theta_s \mathbf{n}_s \right) \right\} \quad (\cos\theta_s = \mathbf{n}_s \cdot \mathbf{e}_d > 0)$ $\mathbf{e}_{y} = \frac{\mathbf{e}_{z} \times \mathbf{e}_{d}}{|\mathbf{e}_{z} \times \mathbf{e}_{d}|}$ Earth $\mathbf{e}_{\mathrm{b}} = \mathbf{e}_{\mathrm{v}} \times \mathbf{e}_{\mathrm{d}}$ A_s : Cross-section area of surface s (m²) noon ε_s : Reflectivity of surface s Earth (3) Empirical Model **n** : Unit normal vector of surface s $\mathbf{a}_{srp} = F\left(\frac{AU}{R}\right)^{2} \left((D_{0} + D_{c}\cos f + D_{s}\sin f)\mathbf{e}_{d} + (B_{0} + B_{c}\cos f + B_{s}\sin f)\mathbf{e}_{b} + (Y_{0} + Y_{c}\cos f + Y_{s}\sin f)\mathbf{e}_{y} \right)$ midnight satellite (4) Other Accelerations: albedo, thermal radiation, ...

Eclipse (Shadow) Model

SRP (2/2)

Specific Empirical Model for QZS-1 (EDBY)^[1]

$$\mathbf{a}_{srp} = F \left(\frac{AU}{R}\right)^{2} \begin{cases} (D_{0} + D_{c}\cos f + D_{s}\sin f)\mathbf{e}_{d} + (B_{0} + B_{c}\cos f + B_{s}\sin f)\mathbf{e}_{b} + (Y_{0} + Y_{c}\cos f + Y_{s}\sin f)\mathbf{e}_{y} + (Z_{0} + Z_{c}\cos f + Z_{s}\sin f)\mathbf{e}_{z} & \text{(YS)} \\ (D_{0} + D_{c}\cos f + D_{s}\sin f + D_{2c}\cos 2f + D_{2s}\sin 2f)\mathbf{e}_{d} + B_{0}\mathbf{e}_{b} + (Y_{0} + Y_{c}\cos f + Y_{s}\sin f)\mathbf{e}_{y} + (Z_{0} + Z_{c}\cos f + Z_{s}\sin f)\mathbf{e}_{z} & \text{(EC)} \end{cases}$$

YS EC YS YS EC YS YS EC YS -154 Do Ds Dc -164 Ys YS YS EC EC +10 +10 +10 Dc2 Ds2 Bo Bc Bs s Dc2 Ds2 EC EC (10⁻⁹ +10 +10 m/s²) Yc Yo Ys Ys Ec EC Ys Ys Ys -10 +10 +20 Zo Zc Zs YS -10 -10 +90 Beta Angle (deg) +90 -90 Beta Angle (deg) +90 -90 Beta Angle (deg)

Model Coefficients wrt Beta Angle^[1]

[1] T. Takasu et al., QZSS-1 Precise Orbit Determination by MADOCA, International Symposium on GNSS 2015, Kyoto, Japan

Numerical Integrations

Solve an Initial Value Problem of ODE

$$\mathbf{y}(t_0) = \mathbf{y}_0, \frac{d\mathbf{y}(t)}{dt} = \mathbf{f}(t, \mathbf{y}(t)) \longrightarrow \mathbf{y}(t_1), \mathbf{y}(t_2), \mathbf{y}(t_3), \mathbf{y}(t_4), \dots$$

Numerical Integration Algorithms

Runge-Kutta methods: RK4, RK8, RKF4(5), RK8(7)13M, RKN12(10)17M, ...Multi-step methods: Adams-Bashforth, Adams-Moulton and predictor-correlatorExtrapolation methods: Bulirsch-Stoer method, Gragg's methodDirect integration of 2nd-order ODE: Runge-Kutta-Nyström, Stoermer and CowellVariable order/variable step methods, ...

RK4 (4th-order 4-stage Runge-Kutta)

$$\mathbf{y}(t_{k+1}) = (\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4)/6 \qquad (\mathbf{h} = t_{k+1} - t_k, \ \delta \mathbf{y} = \mathbf{O}(\mathbf{h}^4))$$
$$\mathbf{k}_1 = \mathbf{f}(t_k, \mathbf{y}(t_k)), \mathbf{k}_2 = \mathbf{f}(t_k + \mathbf{h}/2, \mathbf{y}(t_k) + \mathbf{h}\mathbf{k}_1/2), \mathbf{k}_3 = \mathbf{f}(t_k + \mathbf{h}/2, \mathbf{y}(t_k) + \mathbf{h}\mathbf{k}_2/2), \mathbf{k}_4 = \mathbf{f}(t_k + \mathbf{h}, \mathbf{y}(t_k) + \mathbf{h}\mathbf{k}_3)$$

Integration	RK4 (step=30 s)		RK4 (step=10 s)		RK8 (step=30 s)		RKF4(5)		Gragg' method	
Span	pos (m)	vel (m/s)	pos (m)	vel (m/s)	pos (m)	vel (m/s)	pos (m)	vel (m/s)	pos (m)	vel (m/s)
1 day	41.497	0.0447	0.233	0.0003	0.000	0.0000	0.006	0.0000	0.000	0.0000
3 days	308.27	0.2691	1.644	0.0014	0.000	0.0000	0.006	0.0001	0.000	0.0000
7 days	1739.9	1.8868	7.509	0.0083	0.000	0.0000	0.149	0.0001	0.003	0.0000
30 days	26272.6	23.2447	112.067	0.0984	0.006	0.0000	1.460	0.0014	0.042	0.0000

Orbit Propagation Error (two-body problem, ecc=0.1)

Orbit Propagation

Orbit Propagation

State Transition Matrix and Sensitivity Matrix

 $\begin{aligned} \text{State transition matrix from time } t_0 \text{ to time t:} & \text{Sensitivity matrix wrt parameters p:} \\ \Phi(t,t_0) = & \frac{\partial \mathbf{x}(t)}{\partial \mathbf{x}(t_0)} = \begin{pmatrix} \partial \mathbf{r}(t)/\partial \mathbf{r}(t_0) & \partial \mathbf{r}(t)/\partial \mathbf{v}(t_0) \\ \partial \mathbf{v}(t)/\partial \mathbf{r}(t_0) & \partial \mathbf{v}(t)/\partial \mathbf{v}(t_0) \end{pmatrix} & \mathbf{S}(t) = & \frac{\partial \mathbf{x}(t)}{\partial \mathbf{p}} = \begin{pmatrix} \partial \mathbf{r}(t)/\partial \mathbf{p}_1 & \partial \mathbf{r}(t)/\partial \mathbf{p}_2 & \cdots \\ \partial \mathbf{v}(t)/\partial \mathbf{p}_1 & \partial \mathbf{v}(t)/\partial \mathbf{p}_2 & \cdots \end{pmatrix} \end{aligned}$

(1) Numerical Integration of Variational Equation

$$\begin{pmatrix} \Phi(t_0, t_0), S(t_0) \end{pmatrix} = (\mathbf{I}, \mathbf{0}) \quad \text{Initial matrix} \\ \frac{d}{dt} \begin{pmatrix} \Phi(t, t_0), S(t) \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{I} \\ \frac{\partial \mathbf{a}(t, \mathbf{r}(t), \mathbf{v}(t), \mathbf{p})}{\partial \mathbf{r}(t)} & \frac{\partial \mathbf{a}(t, \mathbf{r}(t), \mathbf{v}(t), \mathbf{p})}{\partial \mathbf{v}(t)} \end{pmatrix} \begin{pmatrix} \Phi(t, t_0), S(t) \end{pmatrix} + \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \frac{\partial \mathbf{a}(t, \mathbf{r}(t), \mathbf{v}(t), \mathbf{p})}{\partial \mathbf{p}} \end{pmatrix} \quad \text{Variational eq.} \\ \text{Numerical} & \text{Integration} & \Phi(t_1, t_0), \Phi(t_2, t_0), \Phi(t_3, t_0), \dots, \Phi(t_n, t_0), S(t_1), S(t_2), S(t_3), \dots, S(t_n) \end{cases}$$
(2) Differential Quotient Approximations (Numerical Differential)
$$\mathbf{x}'(t_0) = \mathbf{x}(t_0) + (\delta \mathbf{x}, 0, 0, \dots, 0)^T \xrightarrow{\text{Orbit propagation}} \mathbf{x}'(t_1), \mathbf{x}'(t_2), \mathbf{x}'(t_3), \dots, \mathbf{x}'(t_n) \\ \frac{\partial \mathbf{x}(t_k)}{\partial x_0} \approx \frac{\mathbf{x}'(t_k) - \mathbf{x}(t_k)}{\delta \mathbf{x}}, \quad \dots \text{ (for all initial states and parameters)} \qquad \mathbf{x}'(t_0) = \mathbf{x}(t_0) + (\delta \mathbf{x}, 0, 0, \dots, 0)^T \xrightarrow{\text{Orbit propagation}} \mathbf{x}'(t_1), \mathbf{x}'(t_2), \mathbf{x}'(t_3), \dots, \mathbf{x}'(t_n) \\ \mathbf{x}'(t_0) = \mathbf{x}(t_0) + (\delta \mathbf{x}, 0, 0, \dots, 0)^T \xrightarrow{\text{Orbit propagation}} \mathbf{x}'(t_1), \mathbf{x}'(t_2), \mathbf{x}'(t_3), \dots, \mathbf{x}'(t_n) \\ \frac{\partial \mathbf{x}(t_k)}{\partial x_0} \approx \frac{\mathbf{x}'(t_k) - \mathbf{x}(t_k)}{\delta \mathbf{x}}, \quad \dots \text{ (for all initial states and parameters)} \qquad \mathbf{x}'(t_0) = \mathbf{x}(t_0) + (\delta \mathbf{x}, 0, 0, \dots, 0)^T \xrightarrow{\text{Orbit propagation}} \mathbf{x}'(t_0) = \mathbf{x}'(t_0) + (\delta \mathbf{x}, 0, 0, \dots, 0)^T \xrightarrow{\text{Orbit propagation}} \mathbf{x}'(t_0) = \mathbf{x}'(t_0) + (\delta \mathbf{x}, 0, 0, \dots, 0)^T \xrightarrow{\text{Orbit propagation}} \mathbf{x}'(t_0) = \mathbf{x}'(t_0) + (\delta \mathbf{x}, 0, 0, \dots, 0)^T \xrightarrow{\text{Orbit propagation}} \mathbf{x}'(t_0) = \mathbf{x}'(t_0) + (\delta \mathbf{x}, 0, 0, \dots, 0)^T \xrightarrow{\text{Orbit propagation}} \mathbf{x}'(t_0) = \mathbf{x}'(t_0) + (\delta \mathbf{x}, 0, 0, \dots, 0)^T \xrightarrow{\text{Orbit propagation}} \mathbf{x}'(t_0) = \mathbf{x}'(t_0) + (\delta \mathbf{x}, 0, 0, \dots, 0)^T \xrightarrow{\text{Orbit propagation}} \mathbf{x}'(t_0) = \mathbf{x}'(t_0) + (\delta \mathbf{x}, 0, 0, \dots, 0)^T \xrightarrow{\text{Orbit propagation}} \mathbf{x}'(t_0) = \mathbf{x}'(t_0) + (\delta \mathbf{x}, 0, 0, \dots, 0)^T \xrightarrow{\text{Orbit propagation}} \mathbf{x}'(t_0) = \mathbf{x}'(t_0) + (\delta \mathbf{x}'(t_0) + (\delta \mathbf{x}'(t_0)) + (\delta \mathbf{x}'(t_0) + (\delta \mathbf{x}'(t_0)) + (\delta \mathbf{x}'(t_0)) + (\delta \mathbf{x}'(t_0) + (\delta \mathbf{x}'(t_0)) + (\delta \mathbf{x}'(t_0)) + (\delta \mathbf{x}'(t_0) + (\delta \mathbf{x}'(t_0)) + (\delta \mathbf{x}'(t_0) + (\delta \mathbf{x}'(t_0)) + (\delta \mathbf{x}'(t_0)) + (\delta \mathbf{x}'(t_0) + (\delta \mathbf{x}'(t_0)) + (\delta \mathbf{x$$

Notes: Carefully select delta-x value to minimize approximation error

 $\mathbf{x}(t_0)$

Orbital Elements

Orbital Elements

- Osculating elements (Kepler elements)

Instant elements derived from two-body problem with short and long period variations

– Mean elements

Averaged elements in some selected time w/o short or long period variations

NORAD TLE (Two Line Elements)^[1]

GPS BIII-1 (PRN 04) : Satellite name

Time

1 <u>43873U</u> 1	<u>8109A</u> 20	0071.16240480	.00000015	00000-0	00000-0 0	<u>9995</u>	: Line 1
2 43873 5	5.0024 182	2.5846 0007249	222.9007 22	29.4123	2.00558681	9200	: Line 2

ſ	Satellite catalog number	[Satellite catalog number			
	U=Unclassified, C=Classified, S=Secret		Inclination (deg)			
	International Designator		RAAN (deg)			
	Epoch year (two digit)		Eccentricity *			
Line 1	Epoch day of the year (days)	Line 2 -	Argument of perigee (deg)			
LINE I	First derivative of mean motion (revs/day ²)		Mean anomaly (deg)			
	Second derivative of mean motion * (revs/da	y ³)	Mean motion (revs/day)			
	Drag term BSTAR (1/earth radii) *	Revolution number at epoch (revs)				
	Element set number		Checksum			
L	Checksum		(* Leading decimal point assumed)			

Coordinate System : TEME, **Time System** : UTC (no formal statement) **Orbit Propagator**^{[2][3]} : SGP, SGP4, SDP4, SGP8 or SDP8

[1] CelesTrak (https://celestrak.com), Space-Track.org (https://spaceOtrack.org)
 [2] F. R. Hoots and R. L. Roehrich, Spacetrack report No.3: Models for propagation of NORAD element sets, 1988
 [3] D. A. Vallado et al., Revisiting Spacetrack Report #3, American Institute of Aeronautics and Astronautics (AIAA), 2006