3D07 GPS 広域補正によるデシメータ級測位 実証試験結果

○笠井晶二(笠井デザインオフィス),高須知二(技術コンサルタント)

Experimental Results of Decimeter class WDGPS

Shoji Kasai (Kasai Design Office Ltd.), Tomoji Takasu (Technical Consultant)

Key Words: WADGPS, Ionospheric Delay, GPS satellite orbit and clock error, Magnetic Storm

Abstruct :

This paper shows experimental results of decimeter-class GPS positioning (10cm-30cm RMS horizontal accuracy) using our Wide Area Differential GPS system (WADGPS).

1. はじめに

我々が開発した GPS 広域補正システムは国土 地理院の GPS 観測網(緯度・経度1度間隔に1 観測点、全国で 90 点程度)を利用して電離層遅 延量及び衛星軌道・時計誤差を推定しL1擬似距離 を使用する1周波ユーザ向けに補正情報をリアル タイムで配信するシステムである。補正情報を受 信したユーザは概略位置及び受信遅れ時間に基 づき補正情報を補完し、L1擬似距離観測データを 補正して測位を実施する。本発表では実証試験結 果に基づいて我々の GPS 広域補正システムがデ シメータ級からサブメータ級の補正精度を有し、 大規模な磁気嵐の際でもサブメータ級の補正精 度を維持することを示す。また、GPS 広域補正シ ステムが地滑り検知に有効であることを示す。

2. L1 擬似距離による測位

2.1 L1 擬似距離の観測誤差

 $\Delta dT^{s}(t) = d\overline{T}^{s}(t) - dT^{s}(t)$

放送暦を適用し GPS 衛星の位置及び衛星時計 誤差を求めた場合、L1 擬似距離観測データに含ま れる誤差は次のように表される。

$PR_r^s(t) + c \cdot d\overline{T}^s(t)$

2.2 広域補正システムによる補正測位

本 GPS 広域補正システムでは放送暦適用後の 上記の誤差の内、対流圏遅延量は Saastamoinen モ デルで補正し、電離層遅延量及び放送暦による衛 星軌道・時計誤差は GPS 広域補正システムから配 信された電離層遅延補正情報及び衛星誤差補正 情報にて補正することにより L1 擬似距離のみで 高精度の測位を実施する。

3. 広域補正情報生成

国土地理院の GPS 観測網の 30 秒観測データを 利用し、電離層遅延量及び衛星軌道・時計誤差の 補正情報を生成・配信する。

表 3.1 広域補正情報生成観測データ

基準観測点	国土地理院電子基準点から緯 度・経度1度間隔に1観測点 を選択、全国で90点程度。
観測周期	30 秒
観測データ	L1/L2 擬似距離·搬送波位相

表 3.2 広域補正情報生成

$= \{\overline{\rho}_{r}^{s}(t) - \Delta \rho_{r}^{s}(t)\} + c\{dt_{r}(t) - \Delta dt^{s}(t)\} + T_{r}^{s}(t) + I_{r}^{s}(t) + E_{r}^{s}(t)\}$	推定/配信状態量	電離層遅延補正値 衛星誤差補正値(レンジ誤差)
$\Delta \rho_r^s(t) = \overline{\rho}_r^s(t) - \rho_r^s(t)$	推定/配信周期	30 秒
$\int \overline{\alpha}^{s}(t) = \sqrt{(\overline{x}^{s}(t) - x_{s}(t))^{2} + (\overline{x}^{s}(t) - x_{s}(t))^{2} + (\overline{z}^{s}(t) - z_{s}(t))}$	2推定方式	拡張カルマンフィルタ
$\int \rho_r(t) - \sqrt{(x_1(t) - x_r(t))} + (y_1(t) - y_r(t)) + (z_1(t) - z_r(t))$		

図 3 に 2004 年 11 月 6 日の広域補正情報生成に 使用したモニタ局配置を示す。

 $d\overline{T}^{s}(t)$: 放送暦による衛星時計誤差

 $\Delta
ho_r^s(t)$: 放送暦による衛星位置誤差の視線方向射影成分

△dT^s(t): 放送暦による衛星時計誤差補正残差

 $\bar{\rho}_{r}^{s}(t)$: 放送暦による衛星位置とユーザ間距離

 $\bar{x}^{s}(t), \bar{y}^{s}(t), \bar{z}^{s}(t)$: 放送暦による衛星位置

図 3.2004 年 11 月 6 日 基準観測点配置

4. 通常時の広域補正測位精度

4.1 誤差要因別補正測位精度解析結果

電離層遅延量及び衛星誤差の補正効果を示す ため、東京を例に各種補正を実施した場合の測位 精度を表1及び表2に示す。広域補正情報の伝送 遅延を考慮し補正値は1分前の値を適用した。

表 4.1-1 2004 年 11 月 6 日 東京(3017)補正測位精度

重克(3017)	測位方式			
亚価項日	Trop	Trop	Trop	
	пор	+Iono	+Sat	
水平位置誤差 RMS[m]	1.79	1.12	1.08	
垂直位置誤差 RMS[m]	4.85	1.67	3.82	
絶対位置誤差 RMS[m]	5.17	2.01	3.97	
UDRE RMS[m]	2.49	1.17	1.44	

表 4.1-2 2004 年 11 月 6 日 東京(3017)補正測位精度

	測位方式		
東京(3017) 評価項目	Trop +Iono +Sat	Trop +Iono +Sat +Filt	
水平位置誤差 RMS[m]	0.26	0.06	
垂直位置誤差 RMS[m]	0.41	0.10	
絶対位置誤差 RMS[m]	0.49	0.12	
UDRE RMS[m]	0.27	0.27	

測位方式の記号の意味を以下に示す。

Trop:対流圏遅延補正(Saastamoinen モデル)

Iono: 広域補正情報による電離層遅延補正

Sat : 広域補正情報による衛星誤差補正

Filt : カルマンフィルタによる測位 (位置プロセスノイズ 1cm/30sec) 図4.1-1から図4.1-5に各測位方式の推定位置誤 差グラフを示す。グラフより電離層遅延補正では 昼間及び垂直位置、衛星誤差補正では夜間の改善 効果が大きいことが判る。

電離層遅延+衛星誤差補正では測位誤差はほ ぼランダムとなり水平位置誤差 RMS20cm レベル、 更に位置フィルタリングを実施した場合、搬送波 位相を使用しない L1 擬似距離のみで水平位置誤 差 RMS10cm レベルが実現可能であることを示し ている。

図 4.1-1 対流圏遅延補正

図 4.1-2 対流圏遅延+電離層遅延補正

図 4.1-3 対流圏遅延+衛星誤差補正

図 4.1-4 対流圏+電離層+衛星誤差補正

図 4.1-5 対流圏+電離層+衛星誤差補正+フィルタ

4.2 国内主要都市の広域補正測位精度

2004年11月6日の国内主要都市の広域補正に よる測位精度評価結果を表4.2-1及び表4.2-2に示 す。 広域補正測位は観測点位置の南北による測位 精度の差はなく全国でほぼ一定である。位置フィ ルタリングを実施しない方式は Epoch by epoch であることから移動体の測位に適用可能であり、 この結果は広域補正システムがより基準観測点 網が密な移動体向け VRS と同等の能力を持つこ とを示している。

位置フィルタリングを併用した固定ユーザの 場合、擬似距離のみで水平位置誤差 RMS10cm レ ベルの測位精度が国内全域で達成可能であるこ とを示している。

表 4.2-1 2004 年 11 月 6 日主要都市補正測位精度

	対流	対流圏+電離層+衛星誤差:			
	観測点	〔位置	位置	誤差	UDDE
観測点	給		水平	垂直	RMS
	/////////////////////	/住/又 [deg]	RMS	RMS	[m]
	[ucg]	[ucg]	[m]	[m]	[]
札幌(0128)	43.0	141.3	0.27	0.40	0.25
仙台(0037)	38.3	141.0	0.23	0.35	0.23
東京(3017)	35.8	139.6	0.26	0.41	0.27
大阪(0353)	34.8	135.3	0.25	0.37	0.25
福岡(1062)	33.7	130.3	0.26	0.41	0.24
那覇(0740)	26.5	128.0	0.24	0.39	0.26

表 4.2-2 2004 年 11 月 6 日主要都市補正測位精度

	対流圏+電離層+衛星誤差補正+フィ					
			ルタ			
観 測 点	観測点	〔位置	位置	誤差	UDDE	
	給		水平	垂直	RMS	
	//年/文 [deg]	/住皮 [deg]	RMS	RMS	[m]	
	[ucg]	[ueg]	[m]	[m]	[]	
札幌(0128)	43.0	141.3	0.08	0.10	—	
仙台(0037)	38.3	141.0	0.05	0.06	_	
東京(3017)	35.8	139.6	0.06	0.10	—	
大阪(0353)	34.8	135.3	0.07	0.11	_	
福岡(1062)	33.7	130.3	0.08	0.08	—	
那覇(0740)	26.5	128.0	0.10	0.13	—	

4.3 覆域周縁部の広域補正測位精度

ネットワーク補正システムでは基準観測点ネ ットワークに囲まれた内部の測位精度は安定す るが、ネットワーク周縁部及び外部の測位精度が 著しく劣化する場合がある。そこで基準点ネット ワーク周縁部における補正測位精度の評価を実 施した。

図 4.3 に評価に使用した観測点位置を示す。数 箇所で精度劣化が見られるが極端な精度劣化は 発生していない。

図 4.3 覆域周縁部の補正測位精度評価観測点配置

	対流	「圏+電	「星誤差	補止	
	観測点	〔位置	位置	誤差	UDDE
観測点	緯度	経度	水平	垂直	RMS
	[deg]	//王/文 [deg]	RMS	RMS	[m]
111 the (00001)	[8]	[[m]	[m]	0.01
椎内 (0001)	45.4	141.8	0.22	0.32	0.21
根室 1(0006)	43.3	145.5	0.39	0.59	0.32
奥尻 2(0527)	42.1	139.4	0.27	0.39	0.27
襟裳 1(0019)	42.0	143.2	0.30	0.43	0.26
東通 (0533)	41.1	141.4	0.34	0.53	0.30
男鹿 1(0030)	40.0	139.8	0.25	0.35	0.24
宮古 (0028)	39.6	141.9	0.36	0.52	0.36
両津 1(0232)	38.3	138.5	0.28	0.41	0.26
大山 (0550)	38.3	141.5	0.28	0.38	0.26
倉島 (0252)	37.9	136.9	0.25	0.36	0.26
五箇 (0382)	36.3	133.2	0.29	0.41	0.26
銚子 (3022)	35.7	140.8	0.25	0.36	0.25
館山 (3047)	35.0	139.9	0.29	0.42	0.28
美津島(0457)	34.3	129.3	0.26	0.39	0.24
南伊豆(3086)	34.6	138.8	0.23	0.35	0.23
御前崎(3101)	34.6	138.2	0.22	0.33	0.22
串本 (0070)	33.5	135.8	0.28	0.45	0.28
室戸 (0082)	33.3	134.1	0.25	0.34	0.24
八丈 (5113)	31.1	139.8	0.25	0.41	0.26
土佐 (0085)	32.8	133.0	0.23	0.36	0.24
福江 (0462)	32.7	128.8	0.22	0.33	0.23
佐多 (0491)	31.1	130.7	0.21	0.33	0.22
南種子(0726)	30.4	130.9	0.23	0.35	0.25
十島(0729)	29.6	129.7	0.25	0.38	0.24
和泊(0735)	27.4	128.7	0.22	0.38	0.23
南大東(0497)	25.8	131.2	0.24	0.45	0.26
石垣1(0749)	24.5	124.3	0.29	0.51	0.27
与那国(0499)	24.5	122.9	0.23	0.45	0.25

表 4.3 2004 年 11 月 6 日覆域周縁部補正測位精度

5. 大規模な磁気嵐の際の広域補正測位精度

2004年11月7日から8日に掛け大規模な磁気 嵐が発生し8日20時頃(LT)に北海道で大幅な電子 密度変動が記録された。図5-1に2004年11月8 日の札幌、東京、那覇のVTEC及び図5-2に2004 年11月8日20時30分(LT)のVTECマップ示す。

図 5-1 2004 年 11 月 8 日 札幌、東京、那覇 VTEC

図 5-2 2004 年 11 月 8 日 20.5 時(LT) VTEC マップ

5.1 主要都市の広域補正測位精度

2004年11月8日電離層大擾乱期の国内主要都 市の広域補正による測位精度評価結果を表 5.1-1 及び表 5.1-2 に示す。電離層擾乱による電離層遅 延補正精度の劣化は避けられないがフィルタを 使用しない場合、電離層平穏期の11月6日に比べ、 若干の精度劣化はあるものの大幅な精度低下に は至っていない。フィルタを併用した場合、全国 で測位精度劣化が見られる。cmレベルでは電離層 遅延補正精度劣化の影響が現れていると考えら れる。

表 5.1-1 2004 年 11 月 8 日 土安都市補正測位精度					
	対方	範圏+電	離層+衛	星誤差衫	甫正
	観測点	〔位置	位置詞	誤差	UDDE
観測点	給	怒 宦	水平	垂直	RMS
	//年/又 [dog]	性反 [dog]	RMS	RMS	[m]
	[ueg]	[ueg]	[m]	[m]	[]
札幌(0128)	43.0	141.3	0.30	0.44	0.29
仙台(0037)	38.3	141.0	0.25	0.38	0.25
東京(3017)	35.8	139.6	0.28	0.45	0.29
大阪(0353)	34.8	135.3	0.27	0.43	0.28
福岡(1062)	33.7	130.3	0.28	0.44	0.26
那覇(0740)	26.5	128.0	0.26	0.40	0.27

ガーナー 大手 一丁 ショロノト・ 小手

表 5.1-2 2004 年 11 月 8 日 主要都市補正測位精度

	対流圏	対流圈+電離層+衛星誤差補正+フィルタ			
	観測点	〔位置	位置詞	誤差	UDDE
観測点	給 审		水平	垂直	RMS
	//年/文 [deg]	/住/文 [deg]	RMS	RMS	[m]
	[ueg]	[ucg]	[m]	[m]	[]
札幌(0128)	43.0	141.3	0.15	0.22	—
仙台(0037)	38.3	141.0	0.11	0.16	—
東京(3017)	35.8	139.6	0.15	0.20	—
大阪(0353)	34.8	135.3	0.14	0.17	—
福岡(1062)	33.7	130.3	0.12	0.18	_
那覇(0740)	26.5	128.0	0.15	0.06	_

5.2 覆域周縁部の広域補正測位精度

覆域周縁部では離島の覆域損失及び関東以北 で明らかな精度劣化が見られるものの、擾乱の影 響が最も大きかった北海道を含め国内全域で水 平位置誤差 RMS50cm 以下のサブメータ級の精度 は維持している。

表 5.2-1 2004	11月8日覆域周縁部	補正測位精度
	対法圏 上 雪 離 層 上 復	6.見 韶 羊 補 正

	対?	対流圏 + 電離層 + 衛星誤差				
	観測点位置		位置詞	UDDE		
観測点		経度	水平	垂直	RMS	
	[deg]	[deg]	RMS	RMS	[m]	
	[ueg]	[ucg]	[m]	[m]	[]	
稚内 (0001)	45.4	141.8	0.31	0.45	0.30	
根室 1(0006)	43.3	145.5	0.39	0.63	0.38	
奥尻 2(0527)	42.1	139.4	0.33	0.50	0.32	
襟裳 1(0019)	42.0	143.2	0.44	0.61	0.36	
東通 (0533)	41.1	141.4	0.39	0.60	0.35	
男鹿 1(0030)	40.0	139.8	0.29	0.49	0.30	
宮古 (0028)	39.6	141.9	0.42	0.62	0.40	
両津 1(0232)	38.3	138.5	0.35	0.48	0.31	

表 5.2-2 2004 年 11 月 8 日覆域周縁部補正測位精度

	対流圈+電離層+衛星誤差補				補正
	観測	点位置	位置詞	誤差	UDDE
観測点	緯度 [deg]	経度 [deg]	水平 RMS [m]	垂直 RMS [m]	RMS [m]
大山 (0550)	38.3	141.5	0.31	0.40	0.29
倉島 (0252)	37.9	136.9	0.33	0.46	0.33
五箇 (0382)	36.3	133.2	0.36	0.53	0.34
銚子 (3022)	35.7	140.8	0.33	0.49	0.34
館山 (3047)	35.0	139.9	0.36	0.51	0.34
美津島(0457)	34.3	129.3	0.29	0.41	0.27
南伊豆(3086)	34.6	138.8	0.29	0.40	0.27
御前崎(3101)	34.6	138.2	0.27	0.37	0.27
串本 (0070)	33.5	135.8	0.36	0.52	0.33
室戸 (0082)	33.3	134.1	0.32	0.60	0.34
八丈 (5113)	31.1	139.8	—	_	—
土佐 (0085)	32.8	133.0	0.28	0.43	0.29
福江 (0462)	32.7	128.8	0.24	0.33	0.25
佐多 (0491)	31.1	130.7	0.26	0.57	0.31
南種子(0726)	30.4	130.9	0.27	0.43	0.28
十島 (0729)	29.6	129.7	0.27	0.41	0.26
和泊 (0735)	27.4	128.7	0.23	0.40	0.24
南大東(0497)	25.8	131.2	0.27	0.54	0.27
石垣1(0749)	24.5	124.3	0.28	0.44	0.26
与那国(0499)	24.5	122.9	0.25	0.41	0.26

6. 広域補正測位による地滑り検出の可能性

2003年9月25日19時58分(UT)に発生した十 勝沖地震により襟裳1(0019)が70cm程度移動した。 襟裳 1 に最も近い基準観測点 音別(0112)も同方 向に 30cm 移動しており相対移動量は約 40cm と なる。

図 6-1 及び図 6-2 に襟裳 1 の地震による移動を 広域補正測位により捉えた結果を示す。

図 6-1 2003 年 9 月 25 日 襟裳 1 測位結果

図 6-2 2003 年 9 月 25 日 襟裳 1 水平位置誤差

この結果は 10cm 以上の地滑りならば位置フィ ルタを併用した広域補正測位によりリアルタイ ムに検出可能であることを示している。

7. まとめと今後の課題

緯度・経度1度間隔に1観測点程度、全国で約 100点の基準観測点網を利用して電離層遅延量及 び衛星軌道・時計誤差を推定し、L1擬似距離を使 用する1周波ユーザ向けに補正情報をリアルタイ ムで配信する GPS 広域補正システムで以下の測 位精度を実現できることを示した。

・移動体ユーザ:水平位置誤差 RMS20cm 級

・固定ユーザ :水平位置誤差 RMS10cm 級

また本 GPS 広域補正システムが大規模な磁気 嵐の際でも都市部での精度劣化はほとんどなく、 国内全域でサブメータ級の補正精度を維持する ことを示した。更に広域補正によりL1擬似距離の みでも地滑り検出が可能であることを明らかに した。

今後の課題としては以下の試験・評価により補 正精度及び測位精度の特性を把握し、ユーザの利 用環境に対するシステム最適化の手順を確立す ることである。

- 移動体での実証試験
- ・電離層遅延が大きい東南アジアでの実証試験
- ・搬送波位相利用による測位精度向上
- 基準観測点網の配置による精度特性評価
- ・IGS 精密暦との比較による精度特性評価

参考文献

- [1] B.Parkinson et al., Global Positioning system: Theory and Applications, AIAA 1996.
- [2] K.Hoshinoo, T.Sato, Initial Results of GPS Orbit and Clock Estimation by Japanese GNSS Test System
- [3] G.Ma, T.Maruyama, Derivation of TEC and estimation of instrumental biases from GEONET in Japan, Annales of Geophysicae 2003(21) 2083-2093